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Abstract 
We model the interaction of two phonological factors that condition French schwa alternations: schwa 
is more likely after two consonants; and schwa is more likely in the penultimate syllable. Using new 
data from a judgment study, we show that both factors play a role in schwa epenthesis and deletion, 
confirming previous impressionistic descriptions, and that the two factors interact cumulatively: they 
have a stronger effect together than alone. Treating each factor as a constraint, we find that their cumu-
lative interaction in probabilistic space is better modeled with weighted rather than ranked constraints. 
To accomplish this, we characterize patterns of cumulativity in terms of how cumulativity affects prob-
ability. MaxEnt and Noisy HG can model the full range of cumulativity — sublinear, linear, and super-
linear — while Stochastic OT can only model sublinear cumulativity. French schwa displays superline-
ar cumulativity, and as a result, the pattern is unobtainable in Stochastic OT. We find that the pattern of 
superlinearity is too extreme even for Noisy HG, leaving MaxEnt as the model with the closest fit to 
the experimental data. 

1. Introduction 
In his landmark study originally published in 1973, Dell (1985) provides a remarkably thorough de-
scription of the complex set of phonological factors conditioning the schwa-zero alternation in the rela-
tively “standard” variety of Parisian French of which he is a native speaker, and proposes an analysis in 
terms of the phonological framework presented in Chomsky and Halle (1968). One of the central 
claims of his analysis is that both deletion of underlying schwa and epenthesis are involved in produc-
ing the surface distribution. Examples of deletion of underlying schwa are shown in (1a) and (1b), and 
a case of epenthesis is provided in (1c). French “schwa” is transcribed here as [œ]. 

1. Schwa deletion and epenthesis 
(a) /dœvrɛ/ → [dvrɛ]  Tu devrais partir.   
(b) /mœ/ → [m]   Tu me dois de l’argent.  
(c) /film/ → [filmœ]  un film danois  

In all of these examples, the process applies variably: (1a, b) could be produced with a surface schwa, 
and (1c) without one. Although speech rate and speech register affect the probability of deletion in 
these contexts, according to Dell both variants are possible in what might be described as a neutral rate 
and register. 

 In this paper, we focus on the interaction of two phonological factors that affect the probability of 
schwa deletion and epenthesis. The first factor is whether a singleton consonant or a consonant cluster 
precedes the schwa. Deletion is less likely, and epenthesis more likely, when schwa is preceded by a 
cluster. Dell’s rule of schwa deletion applies only when a single consonant precedes, as in the examples 
in (1a, b), and his rule of epenthesis applies only when a cluster ends the word (or morpheme), as in 
(1c). Dell’s analysis abstracts from the fact that schwa deletion can also apply when a cluster precedes, 
as in (2a, b). Deletion almost certainly applies in these examples with lower probability than in (1a, b), 
but it is also possible for most speakers. 
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2. Examples of deletion in the CC_ context 
(a)  Il devrais partir.   [il d_vʁɛ paʁtiɹ] 
(b)  Il me doit de l’argent.  [il m_ dwa dœ laʁʒɑ̃] 

A second factor that plays a role in conditioning the probability of both deletion and epenthesis is the 
position of the schwa in the prosodic phrase. Deletion is less likely, and epenthesis more likely, when 
the schwa is in penultimate position (see section 2 for references). For example, film is more likely to 
be followed by a schwa in un film russe [ɛ ̃filmœ ʁus] than un film danois [ɛ ̃filmœ danwa].  

 Examples like these raise both empirical and theoretical challenges. On the empirical side, data on 
relative frequency of outcomes are harder to collect than data on categorical differences. Single speaker 
intuitions and observations like those of Dell (1985) are invaluable as a starting point, but as we will 
show, they do not provide the fine-grained data needed to evaluate and compare probabilistic models. 
On the theoretical side, many phonological frameworks have no way to express the greater probability 
of the schwa-less pronunciation in (1a, b) than in (2a, b), let alone explain why particular contexts favor 
schwa. For example, the standard SPE framework adopted by Dell (1985) allows rules to apply cate-
gorically or optionally, but not with some specified probability. One could of course describe the pat-
terns in a Variable Rules model (Labov 1969) by writing the conditioning factors into separate deletion 
and the epenthesis rules, but this model would not make particularly strong predictions. For example, 
there seems to be no reason that ta preceding cluster could not increase the probability of deletion and 
decrease the probability of epenthesis, the opposite of observed facts.  

 Constraint-based models address both of these theoretical challenges. Such models allow a single 
factor, or constraint, to play a role across multiple processes, and as we will discuss below, there are 
several probabilistic constraint-based models that can generate degrees of optionality as required by the 
schwa data (see Coetzee & Pater 2011 for an overview of such models, and a comparison with Variable 
Rules). To model the two phonological factors discussed above, our analysis posits a constraint favor-
ing schwa in penultimate position, and a constraint against coda clusters. 

3. Constraints on schwa deletion and epenthesis 
(a) PENULT=Ə 
 Effect: more schwa in _σ than in _σσ 
(b) *CLUSTER 
 Effect: more schwa in CC_ than in C_ 

 In French, these two constraints appear to interact cumulatively. Schwa is more likely to be realized 
in contexts where it’s favored by both constraints, relative to contexts where it’s favored by just one. 
Examples like la terre se vend (CC_σ) have greater probability of pronounced schwa than le vin se 
vend (C_σ) and la terre se vend bien (CC_σσ). In the table below, the rows distinguish schwas in pe-
nultimate vs. antepenultimate position, and the columns distinguish underlying schwas with a preceding 
singleton consonant vs. a cluster.  

4. Examples of contexts with underlying schwa 
 C_ CC_ 
_σ 
 

le vin se vend 
[lœ vɛ ̃s_ vɑ̃] 

la terre se vend 
[la tɛʁ s_ vɑ̃] 

_σσ 
 

le vin se vend bien 
[lœ vɛ ̃s_ vɑ̃ bjɛ]̃ 

la terre se vend bien  
[la tɛʁ s_ vɑ̃ bjɛ]̃ 

Although different constraint-based models of variation can model cumulativity, granting higher prob-
ability to a pronounced schwa in la terre se vend (CC_σ) than in the other examples, models differ in 
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the patterns they predict for the cells of table (4).  

 In this paper, we use these differences in predictions to compare three constraint-based models of 
variation in detail: Stochastic OT (Boersma 1997), Noisy Harmonic Grammar (Boersma & Pater 2016), 
and Maximum Entropy Grammar (MaxEnt; Goldwater & Johnson 2003). Stochastic OT can model the 
cumulative interaction of two constraints, as long as the constraints have relatively similar values (Jä-
ger & Rosenbach 2006). Cumulative constraint interaction is one of the major predictions of Harmonic 
Grammar (HG; Smolensky & Legendre 2006) whose weighted constraints produce “gang effects”, and 
probabilistic variants of HG, such as Noisy HG and MaxEnt, can produce gradient cumulativity. In sec-
tion 4, we characterize these differences in terms of how cumulativity affects probability: sublinearly, 
linearly, or superlinearly, and show that Stochastic OT produces only sublinear cumulativity, with the 
other theories having more subtle restrictions on the patterns they predict. 

 To compare the three frameworks, we report and model experimental data on French schwa, using 
judgments from multiple native speakers on the acceptability of pronounced schwa across contexts. Of 
the three models, MaxEnt provides the best fit for the pattern of superlinear cumulatively found in 
French schwa. Our results add to a growing body of work showing that weighted constraints provide a 
better fit to probabilistic natural language data than ranked constraints, particularly when it comes to 
cumulativity (Guy 1997; Goldwater & Johnson 2003; Benor & Levy 2006; Jäger & Rosenbach 2006; 
Zuraw & Hayes 2017).1 The French data also illustrate a prediction of weighted constraints that Zuraw 
and Hayes (2017) call across-the-board effects, which occur when a constraint has an effect on proba-
bilities across contexts. In the case of French schwa, the effects of the conditioning factors are mirrored 
in both epenthesis and deletion contexts, modulo floor and ceiling effects. To our knowledge, this is the 
first model of French schwa to simultaneously address both probabilistic epenthesis and probabilistic 
deletion. 

 The paper is structured as follows. In section 2, we provide a brief review of the two phonological 
factors conditioning French schwa, and formalize these factors as phonological constraints. After the 
presentation of the experiment in section 3, we present a full model of the data in section 4, using the 
probabilities from the experiment to compare different constraint-based models of phonological varia-
tion. 

2. Schwa epenthesis and deletion 
In this section, we provide background on the two phonological factors, repeated in (5), which play a 
role in both schwa epenthesis and deletion.  

5. Conditions on schwa epenthesis and deletion 

(a) The cluster factor: more schwa in CC_ than in C_  
(b) The phrase position factor: more schwa in _σ than in _σσ 

  The distinction we make between underlying and epenthetic schwas, adopted from Dell (1985), 
is as follows. Underlying schwas are morpheme-internal, such as the one in devrais in (1a), or in clitics, 
such as the one in me in (1b). Epenthetic schwas are found at the right edge of non-clitics, such as the 

                                                

1 Two of these papers — Guy (1997) and Benor & Levy (2006) — compare ranked constraint models 
to logistic regression, which is nearly equivalent to MaxEnt when there are two candidates per candi-
date set. All of the papers include Stochastic OT as a ranked constraint model, except Guy (1997), who 
only considers Anttila’s (1997) model of partially ordered constraints. 



4 

schwa that appears after film in (1c). The justification for treating boundary schwas as epenthetic is the 
alternation's productivity. Schwa can appear at any morpheme boundary, given the right phonological 
context. As shown in the examples below, schwa occurs at word boundaries (6a) and suffix boundaries 
(6b), even if there’s no orthographic “e” (6c). In examples, we follow the notation of Dell (1985): in 
both orthography and phonetic transcription, obligatory schwas are underlined, optional schwas are in 
parentheses, and orthographic “e”s that are never pronounced are written ɇ. 

6. Data from Dell (1985) 
(a) une veste rouge [yn vɛstœ ʁuʒ]  (pg. 224) a red vest 
       cf. une vestɇ rouge et blanc [yn vɛst ʁuʒ ɛ blã] (pg. 224) a red and white vest 
(b) exacte-ment  [ɛgzaktœ-mã]  (pg. 228) exactly 
       cf. massivɇ-ment  [masiv-mã]  (pg. 228)   massively 
(c) un short vert  [ɛ ̃ʃɔʁtœ vɛʁ]  (pg. 237)        a green pair of shorts 

  The underlying-epenthetic division we assume isn't universal. Dell (1985), for example, treats 
some of the alternating schwas above as underlying (consistent with orthography), and Côté & Morri-
son (2007) argue that schwas at clitic boundaries are epenthetic. As we show below, schwa in clitics 
and schwa at word boundaries surface at different rates, and the epenthesis-underlying distinction we 
assume provides a straightforward account of these differences. 

2.1 The cluster factor 
The cluster factor plays a role in both deletion and epenthesis. In both cases, schwa is more likely after 
two or more consonants than after one consonant. The examples below show this for deletion, while 
controlling for phrase position. 

7. Deletion and the cluster factor (Dell 1985) 
(a) mange le gateau  [mɑ̃ʒ lœ gato]  CCe σσ  (p. 229) 
(b) mangez l(e) gâteau [mɑ̃ʒɛ l(œ) gato]  C(e) σσ (p. 229) 
(c) Jacques devrait partir [ʒak dœvʁɛ paʁtiʁ] CCe  σσσ  (p. 228) 
(d) Henri d(e)vrait partir [ɑ̃ʁi d(œ)vʁɛ paʁtiʁ] C(e) σσσ  (p. 228)  

 The number of preceding consonants also plays a role in epenthesis, as shown in (8). These data are 
judgments from Côté (2007). 

8. Epenthesis and the cluster factor (Côté 2007)  

(a) la sect(e) partait [la sɛkt(œ) paʁtɛ] CC(e) σσ  
(b) l’Aztèquɇ partait [l aztɛk paʁtɛ] Cɇ σσ 

Taken together, (7) and (8) show that epenthesis and deletion are affected by the cluster factor, but dif-
fer in their baseline rates of schwa: schwa is more likely to be pronounced when it’s underlying. This 
can be seen by comparing (7a) vs. (8a) and (7b) vs. (8b). 

 In the constraint-based models that follow, we model the cluster factor with the constraint 
*COMPLEX, which militates against coda clusters.  

9. *COMPLEX: Assign one violation for every coda cluster. 

This constraint has been used in Optimality Theoretic accounts of French schwa deletion (Noske 1996; 
Tranel 2000) and reflects a syllable-based approach to French schwa, pursued in Morin (1974), Ander-
son (1982), and many others (for an overview, see Côté 2000: 87–90). The basic idea is that failing to 
produce a schwa in the context CC_C results in a marked coda cluster. For example, schwa is preferred 
in la terre se vend bien [la.tɛʁ.sœ.ṽɑ.bjɛ]̃ because schwaless [la.tɛʁs.ṽɑ.bjɛ]̃ contains the coda cluster 
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[ʁs]. It’s important to note that the constraint *COMPLEX is violable, and just one of many factors that 
influence the likelihood of realizing of schwa. 

 The use of *COMPLEX here abstracts away from the sonority of coda clusters, which have well-
documented effects on schwa realization. For example, Delattre (1951) describes schwa as more likely 
when it’s preceded by two consonants of descending sonority (e.g. [ʁm_] in fermeture) than when it’s 
preceded by two consonants of ascending sonority ([pʁ_] in appr(e)nez). These sonority effects aren’t 
relevant in our model, since our experiment controls for cluster sonority. 

2.2 Position 
An effect of position has been observed since Léon (1966), who describes schwa as more likely to be 
pronounced in the penultimate syllable (see also Morin 1974, Dell 1985, Côté 2007). In epenthesis, the 
effect of the phrase position factor can only be observed after a cluster, since epenthesis reportedly 
never occurs after a single consonant. 

10. Epenthesis and the phrase position factor (Morin 1974: 77) 
(a) le garde ment [lœ gardœ mɑ̃] CCe σ    
(b) le garde mentait [lœ gaʁd(œ) mɑ̃tɛ]  CC(e) σσ 

 In deletion, an effect of the position factor can be observed after both clusters and singleton conso-
nants, word-internally and in clitics. The pair in (11) demonstrates that position plays a role when 
schwa is after two consonants.  

11. Deletion shows an effect of position (Dell 1985: 231)  
(a) la terre se vend  [la tɛʁ sœ vɑ̃]  CCe σ   
(b) la terre s(e) vend bien [la tɛʁ s(œ) vɑ̃ bjɛ]̃ CC(e) σσ    

 The examples below show a similar effect of position after single consonants, although the effect is 
subtle. The schwas in (12) and (13) are described as optional, with schwa being more likely to be re-
tained in the penultimate syllable. 

12. venez in Dell (1985: 227) 
 v(e)nez ici  v(e)nez     
 [v(œ)ne isi] [v(œ)ne]       
  ← Less schwa      More schwa → 
 
13. ce in Morin (1974: 77) 

  c(e) garçon  c(e) gars 
  [s(œ) gaʁsɔ̃] [s(œ) ga]       
         ← Less schwa      More schwa → 

The phrase position effect described above distinguishes only between penult and non-penult positions. 
Other more nuanced effects of phrase position have been described, but these other effects are weaker 
and disputed. Côté (2007) reports that the prosodic context before schwa plays an additional role, as 
shown by pairs like jette de lortie and achète d(e) l’ortie, in which schwa is preceded by one and two 
syllables, respectively. As noted by Côté, however, the effect of leftward context is arguably weaker 
than the effect of rightward context. Adding to the data in (12) and (13), both Dell and Morin claim that 
schwa becomes even less likely when it’s followed by more syllables, as in v(e)nez boire un verre and 
c(e) garçon-là. Côté (2007) argues that the distinction between two following syllables and more than 
two following syllables is much weaker than the distinction between penult and non-penult. In support, 
Côté cites Lucci (1976), a corpus study on French schwa, which finds a distinction between one vs. two 
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following syllables, but no distinction between two vs. three following syllables. In our experimental 
items and model, the phrase position factor distinguishes only between penultimate schwas and non-
penultimate schwas. 

 We model the phrase position factor with the constraint, PENULT = Ə, which favors schwa when its 
followed by one syllable but not when it’s followed by two (or more) syllables. This straightforwardly 
mirrors Léon’s (1966) observation that schwa tends to be preserved or inserted in the penultimate syl-
lable.2 

14. PENULT = Ə:  Assign one violation if the penultimate syllable of the phonological 
   phrase is a non-schwa vowel. 

 This constraint can be motivated on the basis of the prosodic structure of French and cross-
linguistic tendencies in foot shape. Since French stress is phrase-final, it’s been argued that every 
stress-assignment domain contains a single right-aligned iambic foot (Charette 1991: 146).3 Support for 
an iambic analysis can be found in truncation, which typically creates final-stressed disyllables, e.g. 
cinéma → ciné [siˈne] (Scullen 1997). 

 Under an iambic analysis, the penultimate syllable of a phrase is special because it’s the weak 
member of a foot, underlined below. The constraint PENULT = Ə favors the realization of schwa in (15a), 
but is indifferent to schwa in (15b).  

15. Footing of French phrases under the assumption of a single right-alighted iamb 

(a) la terre se vend  [ la.tɛʁ.(sœ.ˈṽɑ)ft ] 
      [ la.(tɛʁs.ˈṽɑ)ft  ] 

(b) la terre se vend bien [ la.tɛʁ.sœ.(ṽɑ.ˈbjɛ)̃ft ] 
      [ la.tɛʁs.(ṽɑ.ˈbjɛ)̃ft ] 

 Why should the weak member of a foot be schwa? This can be conceived of either as the result of 
foot-based sonority requirements or a drive for uneven iambs. In many languages, heads of feet contain 
vowels of higher sonority, while weak members of feet contain vowels of lower sonority (Kenstowicz 
1994). Under the view that [œ] is the least sonorous vowel of French, it follows that the penultimate 
syllable will favor [œ] over other vowels. The claim that [œ] is the least sonorous vowel in French has 
been independently proposed in Tranel (2000: 68) to explain why it’s the sole vowel to alternate with 
zero. 

                                                
2 Léon (1966: 122): “E tend à se maintenir à la pénultimième (type: garde-côte) ou à y apparaître (type: 
ours(e) blanc).” 
3 Charette (1991) assumes a single right-aligned foot to capture the position effect in schwa epenthesis. 
Under Charette’s analysis in Government Phonology, the schwa in garde-boîte is required to license 
the final consonant of garde. Without schwa, the output would be [gar.d.bwat], with an empty nucleus 
in the penultimate syllable. The position effect follows from the assumption that empty nuclei are gen-
erally allowed, but aren’t licensed as the weak members of feet, resulting in epenthesis. 
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 Another possibility is that the desire for schwa in the penultimate syllable comes from the 
interaction of stress and syllable weight. Across languages, iambic feet favor the shape of a light 
syllable followed by a heavy syllable (LˈH), and disfavor a heavy unstressed syllable (Hayes 1995). 
Under the assumption that codas contribute weight, realizing a schwa in the penultimate syllable 
(16a,b) ensures the penult is light, while producing a schwa outside of the penult (16c) offers no change 
in foot shape. 

16. A weight-based account of PENULT = Ə 

(a) la terre se vend  [ la.tɛʁ.(sœ.ˈvɑ̃)ft ] σσ[LL]   
      [ la.(tɛʁs.ˈvɑ̃)ft  ]  σ[HL] 

(b) la vin se vend  [ la.vɛ.̃(sœ.ˈvɑ̃)ft ] σσ[LL] 
      [ la.(vɛs̃.ˈvɑ̃)ft  ]  σ[HL] 

(c) la terre se vend bien [ la.tɛʁ.sœ.(vɑ̃.ˈbjɛ)̃ft ] σσσ[LL] 
      [ la.tɛʁs.(vɑ̃.ˈbjɛ)̃ft ] σσ[LL] 

 For the experimental data we model, either justification of PENULT = Ə, sonority or uneven iambs, is 
identical. Further data might be able to distinguish between them, but the question lies beyond the 
scope of this paper.4 

2.3 Restrictions on schwa 
  One last restriction on schwa, which is relevant to our experimental design, is that schwa gener-
ally doesn’t occur next to another vowel, even in contexts where the phrase position and cluster factors 
favor its pronunciation. 

17. No schwa next to a vowel 

(a) lɇ homme  [lɔm] *[lœ ɔm]  the man 
  cf. le gars  [lœ ga]   the boy 

(b) une ouvrɇ-oeuf [uvʁ œf] *[uvʁœ œf] egg opener  
  cf. ouvre-boîte [uvʁœ bwat]  can opener 

The main exception to this generalization is h-aspiré words, which phonetically begin with a vowel, but 
pattern in many ways as if they begin with a consonant. We set those aside here. 

                                                
4 A third possibility is that the phrase position factor is a result of stress clash avoidance, as argued in 
Mazolla (1992). Under this analysis, schwa in la tèrre se vénd avoids a clash between tèrre and vénd, 
while no clash is at stake in la tèrre s(e) vend bíén. For our experimental items, a constraint like 
*CLASH will assign the same violations as PENULT = Ə, assuming every lexical word has final stress. 
However, stress clash can’t account for the phrase position factor’s role in word-internal schwa epen-
thesis and deletion, as found in exactement (6b) or venez (12), since each word has only one stress. In-
terestingly, a clash-based analysis is considered and dismissed in previous analyses of schwa epenthesis, 
such as Charette (1991:167) and Côté (2007:4), in part because stress clash avoidance predicts a differ-
ence between C_σ and C_σσ, a difference which we do find in deletion contexts in our experiment. 
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2.4 Summary 
The table below combines judgments previously reported in the French schwa literature. 

18. Both factors in deletion (word-internally and in clitics) 
  C_  CC_ 
_σ  œ is optional  œ is obligatory 
_σσ  œ is optional  œ is optional 

19. Both factors in epenthesis (at non-clitic morpheme boundaries) 
  C_  CC_ 
_σ  œ is forbidden  œ is obligatory 
_σσ  œ is forbidden  œ is optional 

A central claim of this paper is that both epenthesis and deletion are affected by the same phonological 
factors in the same ways, and should be modeled together. If deletion and epenthesis are conditioned by 
the same constraints, any phonological factor that favors schwa in epenthesis should also favor schwa 
in deletion (modulo ceiling or floor effects). We expect, for example, a difference between schwa dele-
tion in C_σ vs. C_σσ, where both are described as optional, since a difference is observed between 
these contexts in epenthesis. We also expect the differences between deletion and epenthesis to be con-
sistent across phonological contexts. If underlying schwa is more likely than epenthetic schwa after a 
single consonant, then underlying schwa should be more likely than epenthetic schwa after two conso-
nants as well. 
 Three levels of optionality, as in (18) and (19), are insufficient to test these claims, or to fit and 
evaluate models of variation. For this reason, we present the results of an experiment to estimate the 
rate of schwa for each context. 

3. Experiment 

3.1 Experimental design 
We conducted the experiment over the internet, using IbexFarm (Drummond 2013). Participants were 
recruited by word of mouth through social media. 

 Task. The experimental task was two alternative forced choice. Participants were asked to imagine 
that they were speaking with a friend, and choose between two variants of a phrase: one with a pro-
nounced schwa and one without a pronounced schwa. Choices were presented in French orthography. 
Pronounced schwa was indicated with an orthographic “e”, and unpronounced schwa was indicated 
with an apostrophe, which is sometimes used to mark deleted schwas in songs to aid rhythmic parsing, 
or in some colloquially written words (e.g. p’tit for petit). For forms that didn't contain an “e” in the 
orthography, a pronounced schwa was indicated with an “e” in parentheses (e.g. un lac(e) thai vs. un 
lac thai). During a pre-experiment practice phase, participants received extra instructions for these 
forms. In addition to choosing between schwa and no schwa, participants indicated their confidence in 
the answer as certainement (definitely) or probablement (probably). A screen capture of the experiment 
in progress is in (20). 
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20. Screen capture of the experiment in progress 

 Design. The experiment followed a 2 x 2 x 2 factorial design, with 8 conditions. The three factors 
are below. 

21. Factorial design 
(a) Cluster before schwa site    C_ vs. CC_  
(b) Position of schwa site    _σ vs. _σσ 
(c) Underlying or epenthetic schwa  schwa contained in clitic vs. non-clitic 

 The construction of items differed for underlying and epenthetic schwas. Underlying schwas were 
constructed according to the template below, consisting of a noun followed by a post-nominal adjective, 
with the site of the epenthetic schwa at the boundary between them.  

22. Noun + Adjective 
 Noun: C-final or CC-final, all final consonants are obstruents 
 Adjective: σ or σσ, all obstruent-initial               

 Nouns ended in either one or two consonants, and adjectives were one or two syllables long. All 
nouns in the experiment ended in obstruents, and all adjectives began with obstruents, controlling for 
the influence of sonority on the rate of schwa realization. Examples of the four epenthesis conditions 
are below. Each participant saw every noun and adjective only once. The full list of items is included in 
the appendix. 

23. Examples of epenthesis items 
 C_ CC_ 

_σ une bott(e) jaune 
[yn bɔt _ ʒon] 

une vest(e) jaune 
[yn vɛst _ ʒon] 

_σσ une bott(e) chinoise 
[yn bɔt _ ʃinwaz] 

une vest(e) chinoise 
[yn vɛst _ ʃinwaz] 

 Deletion items all consisted of the clitic te, the 2nd person object clitic, which we assume to be un-
derlyingly /tə/. In these items, te was proceeded by a name and followed by a verb, e.g. Maurice te cite 
(“Maurice cites you”). We used only one clitic to control for the fact that lexical items often differ in 
their rates of schwa deletion. 

24. Name + te + Verb 
 Name: C-final or V-final, all final consonants are obstruents 
 Verb: σ (present) or σσ (imperfect), all obstruent-initial 

The schwa in te is preceded by one consonant when the name is V-final, and two consonants when the 
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name is C-final. Position of schwa was manipulated by using different tenses of verbs. In the present 
tense, these verbs are monosyllabic. In the imperfect tense, the suffix -ait /-ɛ/ creates a disyllabic verb. 
Examples of the four deletion conditions are below. Each participant saw every name and verb lexeme 
only once. 

25. Examples of deletion items 
 C_ CC_ 

_σ Eva t(e) choque 
[evat _ ʃok] 

Maurice t(e) cite 
[moʁist _ sit] 

_σσ Eva t(e) choquait 
[evat _ ʃokɛ] 

Maurice t(e) citait 
[moʁist _ sitɛ] 

All items were checked for naturalness with three native speakers. 

 Each participant saw 6 items per condition, 24 for deletion and 24 for epenthesis, in addition to 30 
fillers. Fillers consisted of tenses (past, future) and phonological environments that differed from the 
test items. Most importantly, some fillers contained phrases with schwa adjacent to vowels, which we 
used as catch trials. We excluded from analysis any participant who judged that schwa should definite-
ly be pronounced next to a vowel. The design is summarized below. 

 
26. 78 judgments per participant 
 24 deletion: 6 per cell in (23), no name or verb repeated 
 24 epenthesis: 6 per cell in (25), no adjective or noun repeated) 
 20 fillers for deletion (e.g. Anna s(e) est levée) 
 10 fillers for epenthesis (e.g. un iguan(e) solitaire) 

3.2 Participants and exclusions 
Participants were recruited over the internet through word of mouth. There were 36 participants who 
self-identified as native French speakers from France. We excluded any participants who answered 
“definitely schwa” in catch trials once or more, leaving data for 27. Most participants were from either 
Île-de-France (7/27), Pays de la Loire (7/27), or Auvergne-Rhône-Alpes (6/27). Location data is in-
cluded in the appendix.6 

  

                                                
6 Location is relevant because French schwa is subject to regional variation. For example, in Midi 
French, spoken in Southern French, schwa is more commonly produced in word-final position. Only 
one participant was from Occitanie (Southern France), where Midi French is spoken. Removing this 
participant results in no significant change to the probabilities of schwa across contexts. The only 
changes are to three contexts in the deletion table, and only by one percentage point each after rounding. 
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3.3 Results 
The proportion of schwa responses for both deletion and epenthesis contexts are presented in the tables 
and bar plot below. In parentheses, we include the range of the 95% confidence interval, specifically 
the Wilson score interval.  

27. Deletion contexts: proportion schwa (Wilson score interval)  
 C_ CC_ 
_σ 0.65 (0.57–0.72) 0.94 (0.89–0.97) 
_σσ 0.56 (0.48–0.64) 0.91 (0.86–0.95) 

28. Epenthesis contexts: proportion schwa (Wilson score interval) 
 C_ CC_ 
_σ 0.12 (0.08–0.18) 0.83 (0.76–0.89) 
_σσ 0.09 (0.05–0.14) 0.68 (0.61–0.75) 

 
29. Barplot: whiskers show Wilson score intervals 

 
 Across all four phonological contexts, schwa is judged as better in deletion contexts than in epen-
thesis contexts. Schwa is also generally judged as better after two consonants than one consonant (the 
cluster factor), and better before one syllable than two syllables (the phrase position factor).  

 To evaluate the statistical significance and effect size of the factors, we fit a mixed effects logistic 
regression model in R (R Core Team 2017) using the package lme4 (Bates, Mächler, Bolker, & Walker 
2015). The dependent variable in the model is the choice between schwa vs. no schwa. The model con-
tains the fixed effects in the table in (30), each of which corresponds to an experimental condition, in 
addition to an interaction term for Stress × Seg. The model also contains a maximal random effects 
structure, with random intercepts for subject and item, and random slopes by subject for all of the fixed 
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effects (including the interaction term).7 

 All of the categorical variables in the model were sum coded, as shown in the “Coding” column in 
the table below. For each variable, the higher level (+1) is the context predicted to favor schwa.  

30. Coding of fixed effects in model 
Fixed effect Level Coding 
Stress 
(position factor) 

_σ +1 
_σσ –1 

Seg 
(cluster factor) 

CC_ +1 
C_ –1 

Ep/Del 
(epenthesis or deletion) 

Deletion +1 
Epenthesis –1 

 The fitted values for the model are shown in (31). A positive coefficient means the rate of schwa 
increases when the predictor is true (having a value of +1 in the table above), and decreases when the 
predictor is false. A negative coefficient means the rate of schwa decreases when the predictor is true. 
The rightmost column, Pr>|Z|, shows p-values for Wald’s test.  

 
31. Mixed effects model: logistic regression (positive = more schwa) 

 Coefficient (β) S.E. Z Pr>|Z| 
(Intercept) 0.94 0.26   
Stress = _σ    0.31 0.11 2.70 <0.01 
Seg = CC_ 1.75 0.15 11.51 <0.001 
Ep/Del = deletion 1.48 0.24 6.25 <0.001 
Stress × Seg – 0.06 0.11 0.55 0.59 

 All fixed effects are significant, except the interaction of Stress × Seg. As shown by the coefficient 
of Seg (β=1.75), the presence of a preceding cluster has the biggest effect on the realization of schwa: 
schwa is more likely after clusters than singletons. Schwa is also more likely in deletion contexts than 
epenthesis contexts (β=1.48), and more likely when followed by one syllable than when followed by 
two (β=0.31). Although the effect size of stress context is relatively small, it’s significant in the model. 
The lack of significance for Stress × Seg shows that the effect of position is not limited to one segmen-
tal context (or vice versa). Both Stress and Seg exhibit independent effects on the likelihood of schwa 
realization. 

4 Presentation of modeling results 
In this section, we compare the ability of three models of variation to fit our experimental data: MaxEnt, 
Stochastic OT and Noisy HG. In the first section, we introduce the models by discussing some of the 
distributions that each one can generate for a subset of the French contexts, and some of the restrictions 
that each model places on the distributions it can generate relative to the other models. We then show 

                                                
7 The glmer equation in R: Schwa ~ EpDel + Stress * Seg + (1 | Item) + (1 + EpDel + Stress * Seg | 
Subject) 
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how the models fare in fitting the actual French data. There has been some previous comparison of the-
se theories (see Hayes and Macpherson 2016 and Pater 2016 and references therein); the following dis-
cussion draws in particular on Jäger and Rosenbach’s (2006) comparison of Stochastic OT and MaxEnt, 
Pizzo’s (2015) discussion of sublinearity in MaxEnt phonotactics, and Zuraw and Hayes’ (2017) com-
parison of Noisy HG and MaxEnt with Stochastic OT. 

4.1 The models 
4.1.1 Constraint set and violation profiles 

To illustrate how the models function, we will consider some distributions that they generate for a set 
of contexts in which schwa is supplied underlyingly, with the following constraints. For simplicity, we 
omit faithfulness constraints here, but include them below when needed. 

32. *COMPLEX:  Assign one violation for every coda cluster. 

33. PENULT = Ə:  Assign one violation if the penultimate syllable of the phonological 
   phrase is a non-schwa vowel. 

34. NOSCHWA:  Assign one violation for every schwa vowel in the output. 

The contexts are those illustrated in the table in (35): the schwa is either in the penultimate syllable, or 
not, and it follows either a singleton, or a cluster.  

35. Examples of contexts with underlying schwa 
 C_ CC_ 
_σ le vin se vend la terre se vend 
_σσ le vin se vend bien la terre se vend bien 

 We consider two candidates for each context: faithful realization of the schwa, and deletion. The 
tableau in (36) shows violations for the two candidates in the context where both conditioning factors 
are relevant. Violations are marked with negative integers. 

36. Constraint violations marked with negative integers 

la terre se vend  NOSCHWA *COMPLEX PENULT = Ə 

Deleted schwa: [la.tɛʁs.vɑ̃]  –1 –1 

Pronounced schwa: [la.tɛʁ.sœ.vɑ̃] –1   

 The table in (37) uses the more compact representation of difference vectors, which result from 
subtracting the deletion candidate's violations from the faithful candidate's. Positive values indicate 
constraints that prefer schwa pronunciation, and negative values those that prefer deletion. 

37. Difference vectors for constraint scores: negative values favor schwa deletion, positive 
favor schwa pronunciation 

 NOSCHWA *COMPLEX PENULT = Ə 
la terre se vend  –1 +1 +1 
la terre se vend bien  –1 +1 0 
le vin se vend  –1 0 +1 
le vin se vend bien    –1 0 0 
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This representation clearly shows the trade-offs in constraint violations in each context. Faithful reali-
zation of the schwa always violates NOSCHWA, and deletion always satisfies it, so all contexts have a 
value of –1 for NOSCHWA, indicating a penalty for schwa pronunciation. This penalty trades off against 
a reward for schwa pronunciation that depends on the environment. In all of the models we consider, 
the probability of schwa pronunciation will always be the highest in the environment in which both 
*COMPLEX and PENULT = Ə are relevant — the topmost row, and will always be the lowest in the envi-
ronment in which neither is relevant — the bottom row. This sets these constraint-based models apart 
from a Variable Rules model. As we mentioned in the introduction, such a model could in principle 
make a schwa deletion rule apply with higher probability in any of the environments (see Coetzee and 
Pater 2011 for further related discussion). As we will shortly examine in detail, the three constraint-
based models differ in exactly how rewards can accumulate in terms of differences in probability as we 
move up the rows. 

 In Optimality Theory (OT: Prince & Smolensky 2004), schwa pronunciation is optimal iff a schwa-
preferring constraint is ranked above NOSCHWA. For example, given the ranking *COMPLEX≫ 
NOSCHWA≫PENULT = Ə, schwa pronunciation will be optimal in just the top two rows, in which 
*COMPLEX prefers it. In a categorical version of Harmonic Grammar (HG; see Smolensky & Legendre 
2006 and Pater 2016 and references therein), the optimal candidate is the one whose weighted sum of 
constraint scores, or Harmony, is the highest. In terms of our difference vectors, schwa pronunciation is 
optimal when the sum of the difference scores, each times its constraints’ weight, is above zero (see 
further Pater 2016). For example, if NOSCHWA had a weight of 3, and each of the other constraints had 
a weight of 2, schwa pronunciation would be optimal in only the top row, where the result of the just-
described equation is 1. With these constraints, this gang effect pattern cannot be modeled in OT. 

4.1.2 Probabilistic models of grammar  

We now turn to the probabilistic variants of OT and HG that are our focus. In Maximum Entropy 
Grammar (MaxEnt; Goldwater & Johnson 2003), a probabilistic variant of HG, the probability of a 
candidate is proportional to the exponential of the weighted sum of violations. In terms of the differ-
ence vectors, the probability of the pronounced schwa is exp(n) / (1 + exp(n)), where n is the weighted 
sum of difference scores.8 This means that the harmony difference between two candidates, candidate a 
minus candidate-b, is the log-odds of candidate a. A Harmony difference of 0 produces 0.5 probability, 
1 → 0.73, 2 → 0.88, 3 → 0.95, 4 → 0.98, 5 → 0.99, and 6 → 1.0, all rounded to 2 decimal points. 
Negative Harmony differences equal one minus the positive value (–1 → 0.27, –2 → 0.12, –3 → 0.05 
and so on). So, given the weights (3, 2, 2) from the previous paragraph, the probability of pronounced 
schwa would be 0.73 in the top row, 0.27 in each of the middle rows, and 0.05 in the bottom row.  

 Stochastic OT (Boersma 1997; Boersma & Hayes 2001) is a probabilistic variant of OT. Each con-
straint is given a real numbered value, but when the grammar is used to evaluate a candidate set, the 
numerical values are converted to an ordinal OT ranking. Variation occurs because the ranking values 
are perturbed by noise before conversion to ranking: each constraint value has a real number added to it 
that is sampled from a Gaussian distribution centered on zero (resampled for each constraint). As Jäger 
and Rosenbach (2006) point out, this model predicts greater probability in a gang effect context like the 
top row of the table in (37). To see this, consider the case when the constraints are tied in value  

                                                
8   The usual MaxEnt calculation for the probability of one of two candidates with Harmony H1 and H2 

respectively is exp(H1) / exp(H1) + exp(H2). Because we have subtracted out the constraint scores for one of 
the candidates, its probability in the equation can be represented as exp(0) = 1. See Zuraw and Hayes (2017) 
for another derivation. 
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(e.g. 1, 1, 1). In such a case, the probability of one constraint being ranked above another is 0.5, which 
is the probability of pronounced schwa in each of the middle rows. In the top row, the pronounced 
schwa is optimal if either *COMPLEX or PENULT = Ə ranks above NOSCHWA, which obtains in 4/6 rank-
ings, thus yielding a probability of 0.66.  

 Jäger and Rosenbach (2006) identify two differences between the patterns of gradient cumulativity 
that can be generated by Stochastic OT and MaxEnt. One is that if the two violations in the cumulative 
case come from a single constraint, in what they call counting cumulativity, Stochastic OT will not 
show an increase in probability under cumulativity. The other (p. 939) is an observation they attribute 
to Paul Boersma, that there are patterns of “strong” cumulativity that cannot be represented by Stochas-
tic OT, but can be represented by MaxEnt. One such example is the MaxEnt pattern we mentioned 
above, in which the schwa pronunciation has 0.73 probability in the top row, but only 0.27 in the mid-
dle rows, and 0.05 in the bottom. In the classification scheme that we develop in what follows, this is a 
superlinear pattern, in that the probability increase from a single reward for schwa pronunciation (the 
middle rows) to two rewards (the top row) is greater than the sum of the increases gained by each of the 
single rewards on their own (bottom to middle rows): 0.46 vs. 0.44. As we show below, Stochastic OT 
can only generate sublinear cumulativity.9 

 Noisy HG (Boersma & Pater 2016) is like Stochastic OT, except the values of the constraints are 
used in a weighted constraint evaluation of the candidate set. Like MaxEnt, it can generate superlinear 
cumultivity, though as we will see, the patterns the two models predict are not identical.  

4.1.3 Detailed predictions of the models: sublinearity through superlinearity 

To further explore the differences amongst these models, we will consider the patterns they each gener-
ate given particular values for the constraints. We first consider values of 1 for all of the constraints. 
For Noisy HG and Stochastic OT, the noise — the Standard Deviation of the Gaussian — is set to 0.2. 
For the Noisy HG model, any resulting negative weights were converted to zero (this is called Linear 
OT in Boersma and Weenink’s 2017 Praat, which we used to explore these models). All probabilities in 
the table are rounded to two decimal points. 

38. Proportion pronounced schwa in output distributions with constraints set to 1. 
 Stochastic OT Noisy HG MaxEnt 
la terre se vend  0.67 1 0.73 
la terre se vend bien  0.5 0.5 0.5 
le vin se vend  0.5 0.5 0.5 
le vin se vend bien    0 0 0.27 

As we have seen, for the middle two rows, one constraint prefers deletion (NOSCHWA), and one con-
straint prefers faithful schwa (*COMPLEX or PENULT = Ə). With equal constraint values, all of the mod-
els grant equal probability to the two outcomes. The top row shows the cumulative effect of the two 
constraints that prefer the faithful candidate. We discussed above why Stochastic OT assigns a proba-
bility of 0.67 in this case. The 0.73 probability in MaxEnt arises because the two constraints preferring 
schwa pronunciation have a summed weight of 2, and NOSCHWA has a weight of 1, giving a difference 

                                                

9 The formulation that Jäger and Rosenbach (2006) cite from Boersma is one in which the single re-
ward cases each have probability less than 𝜀, and the cumulative case has a probability > 1-𝜀. The ex-
ample in the text shows that this definition is not identical to superlinearity, since it is not a “strong” 
case in Jäger and Rosenbach’s (2006) terms. 
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of 1. In Noisy HG, a noise value of 0.2 has a very low probability of subverting the pre-noise prefer-
ence for the faithful candidate by making the sum of the weights of *COMPLEX and PENULT = Ə lower 
than NOSCHWA (less than 0.005, hence rounded to zero). In the final row, no constraint prefers the 
faithful candidate, and it has 0 probability in Stochastic OT. In Noisy HG, if a value of zero were sam-
pled for NOSCHWA, the two candidates would be tied, and the tie would be broken with a random 
choice, which could yield the faithful candidate. The probability of this happening is less than 0.005. In 
MaxEnt, we again have a Harmony difference of 1 between the two candidates, but in this case the 
faithful candidate is the dispreferred one, which gets 0.27 probability. 

 The following table shows the result of increasing the constraint values to 2. For Stochastic OT, this 
has no effect. In Noisy HG, this results in a higher difference between the Harmonies of the candidates 
in the top and bottom rows, but the differences were already large enough with weights of 1 so that the 
noise of 0.2 had no perceptible effect given rounding. In MaxEnt, we see that there is now a higher 
probability for the faithful candidate in the top row, and for the deletion candidate in the bottom; these 
are the probabilities that result when the Harmony difference is 2. As we further increase the weight 
values, the probability of the faithful candidate will approach 1 in the top row, and 0 in the bottom. 
Therefore, MaxEnt is capable of representing the more peaked distribution that Noisy HG produces 
with the current weights, at least to the degree of resolution we are examining. 

39. Proportion pronounced schwa in output distributions with constraints set to 2. 
 Stochastic OT Noisy HG MaxEnt 
la terre se vend  0.67 1 0.88 
la terre se vend bien  0.5 0.5 0.5 
le vin se vend  0.5 0.5 0.5 
le vin se vend bien    0 0 0.12 

With this constraint set, Stochastic OT cannot produce the (1, 0.5, 0.5, 0) distribution over contexts. To 
get 0.5 for both of the middle contexts, NOSCHWA must have the same ranking value as both 
*COMPLEX and PENULT = Ə, and in that case, the probability of pronounced schwa will always be 4/6 = 
0.67. 

 It is also impossible for MaxEnt to represent the Stochastic OT distribution. To get near zero prob-
ability on faithful schwa in the bottom row, NOSCHWA must have a non-negligible weight. For instance, 
a weight of 5 will give it probability 0.007. To get 0.5 probability on faithful schwa for the middle rows, 
*COMPLEX and PENULT = Ə must each have the same weight as NOSCHWA. Their summed weight will 
then give faithful schwa near 1 probability in the top row, failing to match the Stochastic OT value of 
0.67. Noisy HG is also unable to match the Stochastic OT distribution: if the weights are small enough 
to allow NOSCHWA to overcome the cumulative effects of *COMPLEX and PENULT = Ə with 0.67 proba-
bility when noise is added, a non-negligible number of faithful schwas will be produced in the bottom 
row (through random selection in a tie when both candidates have Harmony zero). For example, with 
the ranking values set to 0.2, the top row gets close to the Stochastic OT value at 0.72, and the middle 
rows are at 0.50, but the bottom is at 0.16. MaxEnt cannot match this Noisy HG distribution, for rea-
sons we will now discuss.  

 In the examples we have looked at so far, cumulativity is weaker in Stochastic OT than in the 
weighted constraint theories. To measure cumulativity in probability space, we can consider the effect 
of a constraint on its own, versus its joint effect with another constraint. That is, in our tables, we can 
consider the differences in probability of schwa between the bottom and middle rows, which show the 
effects of each of *COMPLEX and PENULT = Ə on their own, versus the differences between middle and 
top, which show the additional probability given to schwa when both of the schwa-preferring con-
straints are relevant. In all of the weighted constraint examples we have looked at in the tables, cumula-
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tivity is linear: the difference between the bottom and middle rows is the same as the difference be-
tween the middle and top (this is only true with rounding for Noisy HG since the zero floor subverts 
true linearity). That is, the effect on probability of schwa of *COMPLEX or PENULT = Ə is the same on 
its own as when it is added to the other constraint. Stochastic OT, on the other hand, displays sublinear 
cumulativity: either constraint on its own increases the probability of schwa by 0.50, but the additional 
probability gained by adding the second constraint is only 0.17. 

 Stochastic OT can only represent sublinear cumulativity. To see why, consider the six rankings of 
three constraints, one of which like NOSCHWA disprefers some outcome X across the board (NoX) and 
two that like *COMPLEX and PENULT = Ə prefer X in two partially overlapping environments (+X1 and 
+X2). In the table below, an X indicates that the outcome occurs in the environment specified in the 
column heading given the ranking in that row. The environments are those in which neither +X1 nor 
+X2 is relevant (Env. A), in which only one is (Env. B and Env. C), and in which both are (Env. D). 

40. Illustration of Stochastic OT cumulativity  
  Env. A Env. B Env. C Env. D 
a. NoX >> +X1 >> +X2     
b. NoX >> +X2 >> +X1     
c. +X1 >> NoX >> +X2  X  X 
d. +X1 >> +X2 >> NoX  X X X 
e. +X2 >> NoX >> +X1   X X 
f. +X2 >> +X1 >> NoX  X X X 

 The difference in probability of X between Environment B, in which only +X1 is relevant, and En-
vironment A is the summed probability of rankings c., d., and f. The difference in probability of X be-
tween Environment C, in which only +X2 is relevant, and the cumulative Environment D is just the 
probability of ranking c. Assuming that none of the rankings have zero probability, the probability dif-
ference of X will thus always be smaller between Environments C and D than between A and B: the 
contribution of +X1 to the probability of X is greater on its own, than in conjunction with +X2. The 
same logic applies to +X2 on its own and jointly with +X1. 

 MaxEnt and Noisy HG, on the other hand, can display a range of degrees of cumulativity, from 
sublinear through superlinear. As we have seen already, the degree of cumulativity is not completely 
free: neither MaxEnt nor Noisy HG could match Stochastic OT in the weakness of cumulativity in the 
examples in the above tables, when the probability in the middle rows was at 0.5. In this situation, 
MaxEnt is necessarily strictly linear. This can be understood based on Zuraw and Hayes' (2017)  obser-
vation that the contribution of a given weighted constraint violation difference to probability forms a 
sigmoid that is steepest at 0.5, and which becomes shallower as we approach 0 and 1. In other words, 
its contribution is higher as we approach 0.5, and smaller as we approach 0 or 1. The contribution on 
either side of 0.5 is equal: if adding a violation difference increases probability from a baseline of 0.4 to 
0.5, it will also increase probability from 0.5 to 0.6. This is the situation we have looked at in the tables 
thus far, and this explains why MaxEnt cannot match the Stochastic OT (0.67, 0.5, 0.5, 0) distribution 
in both tables, nor the Noisy HG (0.72, 0.5, 0.5, 0.12) distribution discussed in the text. 
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 To escape the clutches of linearity in MaxEnt, we can change the probability of faithful schwa in 
the environment in which only one constraint applies. For example, if we give *COMPLEX and  
PENULT = Ə a higher value than NOSCHWA, such as 2 vs. 1 in the following table, the result of adding 
one of the constraints is a probability of higher than 0.5 as in the middle rows, and the effect of adding 
the other (difference with the top row) will be smaller than its effect on its own (difference with the 
bottom row). This is sublinear cumulativity, displayed here by all theories.  

41. Proportion pronounced schwa in output distributions with NOSCHWA set to 1, and 
*COMPLEX and PENULT = Ə set to 2. 

 Stochastic OT Noisy HG MaxEnt 
la terre se vend  1 1 0.95 
la terre se vend bien  1 1 0.73 
le vin se vend  1 1 0.73 
le vin se vend bien    0 0 0.27 

MaxEnt can of course match the Stochastic OT and Noisy HG distributions to the degree of resolution 
we are examining. With the current constraint set, the MaxEnt distribution is completely out of reach of 
the other frameworks because the faithful schwa gets non-negligible probability in the bottom row, and 
it is harmonically bounded by deletion. To give them a chance to match it, we can add McCarthy and 
Prince's (1995) MAX to the constraint set, which assigns a violation to deletion in every context. To 
find weights, we used the learning procedure from the next section. In a typical run, Noisy HG was 
able to come close to the MaxEnt distribution with this larger constraint set (0.94, 0.73, 0.73, 0.25), but 
the Stochastic OT distribution remained fairly distant (0.89, 0.78, 0.78, 0.25), presumably because of 
its weaker cumulativity. 

 Finally, Noisy HG and MaxEnt can display superlinear cumulativity in probability differences, as 
shown in this last table, in which NOSCHWA is given a higher value than *COMPLEX and PENULT = Ə 
(again 2 vs. 1). In MaxEnt, we get predictable superlinearity when the result of adding a single con-
straint is probability less than 0.50. Here, the probability increase from the bottom to the middle rows is 
0.15, and the increase from middle to top is 0.23. 

42. Proportion pronounced schwa in output distributions with NOSCHWA set to 2, and 
*COMPLEX and PENULT = Ə set to 1. 

 Stochastic OT Noisy HG MaxEnt 
la terre se vend  0 0.5 0.5 
la terre se vend bien  0 0 0.27 
le vin se vend  0 0 0.27 
le vin se vend bien    0 0 0.12 

Since Stochastic OT is predictably sublinear, superlinear patterns are predictably beyond its scope. 
MaxEnt and Noisy HG can of course model the Stochastic OT pattern by assigning NOSCHWA suffi-
cient weight relative to the other constraints. With MaxEnt, we can model the Noisy HG pattern by 
scaling the weights used in the table (multiplying them by a constant), which will keep the top row at 
0.50, and can bring the other rows as close to 0 as desired, and Noisy HG can in turn model the MaxEnt 
pattern, at least with the addition of MAX. 

 In sum, we have shown that each of the models can represent patterns of cumulativity that the oth-
ers cannot. This means that we should be able to test them in their relative ability to match natural lan-
guage cumulativity. The biggest difference amongst the models appears to be Stochastic OT's weaker 
cumulativity with respect to the other two: it is always sublinear. MaxEnt's degree of cumulativity, 
sublinear, linear, or superlinear, was shown to be related to where the effect of a single competing con-
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straint lands in probability space, below 0.50, at 0.50, or above. Noisy HG's degree of cumulativity is 
less predictable in that it can model sublinear patterns out of reach of MaxEnt, and in that respect, 
seems like it falls between the two other theories, as might be expected as it combines Stochastic OT's 
noise with MaxEnt's weighted evaluation. 

4.2 Models fit to French data 
Along with cases of underlying schwa discussed in the previous section, our judgment experiment ex-
amined four parallel epenthesis contexts, illustrated in the following table, with the potential schwas 
underlined.  

43. Examples of epenthetic schwa contexts 
 C_ CC_ 
_σ la botte jaune  mets ta veste rouge  
_σσ la botte chinoise  mets ta veste marron  

We assume that the vowels in these cases are not underlying, but are supplied through epenthesis. In 
the contexts in the rightmost column, the epenthetic schwa avoids a coda cluster, and in those in the top 
row, it provides a penultimate schwa. 

 The experimental grand means of pronounced schwa choice are repeated in the two tables below, 
rounded to three decimal points (more precise values were used for finding constraint values). In both 
tables, the lowest rate of schwa is in the bottom-left cell, where the schwa is in the antepenultimate syl-
lable with only a single preceding consonant, and the highest rate is in the upper-right cell, where 
schwa is in penultimate syllable with two preceding consonants. Intermediate values obtain when only 
the constraint against clusters is relevant (bottom-right cell), or the constraint against singletons (top-
left cell). The presence of an underlying vowel leads to a higher rate of schwa in all contexts. 

44. Experimental results (p. of pronounced vowel) 
 Underlying    Epenthetic  
 C_ CC_   C_ CC_ 
_σ 0.648 0.938  _σ 0.122 0.833 
_σσ 0.562 0.914  _σσ 0.090 0.683 

 The constraint set for these models includes the three markedness constraints introduced in the last 
section for the deletion cases: NOSCHWA disprefers schwa across the board, and *COMPLEX and 
PENULT = Ə prefer it in the environments shown in the rightmost columns and the top rows of our tables 
respectively. The faithfulness constraint MAX prefers the pronounced schwa when it is underlying, and 
DEP prefers its absence when it would need to be supplied through epenthesis (see McCarthy & Prince 
1995 on Max and Dep). We also include NOCODA because schwa is preferred by none of the other 
constraints in the epenthesis context represented by bottom-left cell, so Stochastic OT would be unable 
to grant it any probability, and would be unable to match the empirical value of 0.090. The preferences 
of the full constraint set for both underlying and epenthetic schwa are shown in the following table. 
With this constraint set any of the three frameworks can match the data in an individual cell of the table 
in (45) to arbitrary precision, and they can also get the general pattern of cumulative constraint 
interactions. The question is how closely they can fit the overall pattern. 
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45. Difference vectors for constraint scores: negative values favor schwa deletion, positive 
favor schwa pronunciation 
 NOSCHWA *COMPLEX PENULT = Ə MAX DEP NOCODA 
la terre se vend  –1 +1 +1 +1   0   0 
la terre se vend bien  –1 +1   0 +1   0   0 
le vin se vend  –1   0 +1 +1   0 +1 
le vin se vend bien    –1   0   0 +1   0 +1 
mets ta veste rouge  –1 +1 +1   0 –1   0 
mets ta veste marron  –1 +1   0   0 –1   0 
la botte jaune  –1   0 +1   0 –1 +1 
la botte chinoise  –1   0   0   0 –1 +1 

 We first present a MaxEnt model whose weights were obtained by using a batch learner (Staubs 
2011) that incorporates an optimization algorithm that finds weights that minimize the difference be-
tween the training data and the model predictions, in terms of Kullback–Leibler divergence (Kullback 
& Leibler 1951). This is an implementation of the same general approach to MaxEnt grammar and 
learning that is presented in Goldwater and Johnson (2003) and Wilson (2006) (as well as Hayes & 
Wilson 2008, though their model defines a probability distribution over all possible words, rather than 
over a set of candidates for a given UR). The optimization algorithm was L-BFGS-B (Byrd, Lu, 
Nocedal, & Zhu 1995) as implemented in R (Bates et al. 2015). The weights were constrained to be 
above zero, and a gaussian prior with variance 100,000 was imposed (the prior seemed to have no ef-
fect, as a weaker prior did not change the solution). The tables below show the predicted probabilities 
for pronounced schwa in each of the eight environments, as well as the difference with respect to the 
empirical data in the rows labeled error (positive values indicate that the predicted value is too high, 
negative too low). The sum of absolute differences for this MaxEnt model with respect to the empirical 
data is 0.253 (mean over contexts = 0.032; we present SSE and K-L divergence in the summary table at 
the end of this section).  

46. MaxEnt predictions after batch training (probability of pronounced vowel) 
 Underlying    Epenthetic  
 C_ CC_    C_ CC_ 
_σ 0.633 0.967   _σ 0.167 0.775 
error –0.015 0.029  error 0.045 –0.058 
_σσ 0.514 0.948  _σσ 0.109 0.678 
error –0.048 0.034  error 0.019 –0.005 

 The constraint weights producing these probabilities are shown in the following table. As men-
tioned in the previous section, the probabilities result from the formula exp(n) / (1 + exp(n)), where n is 
the weighted sum of difference scores. For the la botte chinoise type of epenthetic schwa, whose prob-
ability is 0.109, the weighted sum is the negative of the weights of NOSCHWA and DEP, plus the weight 
of NOCODA: –1.015 + –1.084 + 0 = –2.099. The corresponding underlying schwa type, le vin se vend, 
differs in the absence of the negative contribution of DEP, and presence of the positive contribution of 
MAX, thus leading to a higher baseline probability of schwa in the “Underlying” table in (46). 



21 

47. MaxEnt constraint weights after batch training 
*COMPLEX 2.845 
DEP 1.084 
MAX 1.069 
NOSCHWA 1.015 
PENULT = Ə 0.490 
NOCODA 0.000 

 The contribution of the high weighted *COMPLEX is seen in the probability differences between the 
columns in each of the “Underlying” and “Epenthetic” tables in (46), while contribution of the some-
what lower weighted PENULT = Ə is seen in the probability differences between rows.10 As discussed in 
the previous section, the function relating weight differences to probability differences is a sigmoid 
centered at 0.50 probability. Therefore, the highest possible contribution of a weight difference is when 
the midpoint between the probability where the constraint doesn't apply and the probability where it 
does apply is 0.50. Thus, the greatest contribution of the *COMPLEX constraint is in the penultimate ep-
enthetic context, where it yields a probability increase of 0.608 (0.775 – 0.167), and the midpoint is 
closest to 0.50 (0.471). This is in line with the empirical differences, where this context has the highest 
difference between preceding singleton and cluster. One might think that to get a greater difference be-
tween the top two cells in the Epenthetic table than in the Underlying table one would need a separate 
constraint, but in fact, this follows in the MaxEnt model from the difference in the baseline probability 
value in each case. Since the baseline probability in the Underlying case is the singleton probability of 
0.633, the MaxEnt model is predicted to yield a smaller probability increase in the cluster. It is worth 
noting, though, that the MaxEnt model winds up producing a slightly smaller difference between the 
columns than in the empirical data for the Epenthetic table, and a slightly larger difference for the Un-
derlying table. 

 PENULT = Ə has its greatest effect on probability differences in the realization of underlying schwa 
in the C_ environment (0.633 – 0.514 = 0.119), again because the midpoint is the closest to 0.50. This 
fits the empirical data in terms of producing a greater effect for PENULT = Ə in the singleton than in the 
cluster environment within the Underlying table, and also in terms of producing a greater effect for 
PENULT = Ə in singletons in the Underlying case than in the Epenthetic. One subtle mismatch with the 
empirical data is that the greatest effect for PENULT = Ə is in fact in the cluster environment of the Ep-
enthetic table (the rightmost column). The MaxEnt model cannot match this because the baseline in 
that case is further away from 0.50.  

 To obtain fitted models for Stochastic OT and Noisy HG, we must use on-line learners; no batch 
approaches are available because it is computationally costly to calculate or estimate model predicted 
probabilities in those frameworks. In on-line learning, the learner receives a single piece of data at each 
learning step and uses the grammar to generate a prediction just for that datum, updating the constraint 
values if the learning datum and the prediction mismatch. Conveniently, it is possible to conduct on-
line learning in a nearly identical way across the three frameworks. For MaxEnt, the on-line method is 
referred to as Stochastic Gradient Ascent (Jäger 2007), and in applying it to Noisy HG, Boersma and 
Pater (2016) call it the Harmonic Grammar Gradual Learning Algorithm (HG-GLA). The weights are 
updated by the difference in violation vectors between the learner's prediction and the learning datum, 
scaled by a learning rate, or plasticity. In Stochastic OT's GLA, constraints preferring the correct learn-

                                                
10 Because NOCODa applies only in the singleton contexts, the effective value of *COMPLEX is dimin-
ished by the weight of NOCODA, but NOCODA here has a zero weight. 
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ing datum are promoted by the plasticity amount, and those preferring the learner's own incorrect pre-
diction are demoted. When the differences between the candidate vectors are always zero or one, as in 
our examples (see table 41), the HG-GLA and the OT-GLA are identical. 

 The learning simulations were conducted in Praat (Boersma & Weenink 2017). Constraints 
were given an initial value of 2, and the plasticity was set to 0.1. The learners received 100,000 samples 
from the target distributions. These distributions were the experimental results in section 3, with equal 
probability given to each off the 8 contexts. The learner then received 3 more sets of 100,000 samples 
of data, with the plasticity set at 0.01, 0.001 and 0.0001 respectively. This training regime is based on 
the Praat defaults, but with an initial weight value of 2 rather than 10 so as to get comparable results 
across the frameworks, and with a correspondingly lower initial plasticity. The noise for Stochastic OT 
and Noisy HG was set at 0.2, rather than the Praat default of 2, because of the lower initial weight and 
plasticity. We conducted 20 runs for each model. 

 The MaxEnt model trained on-line predicts distributions very similar to those of the model trained 
in a batch fashion. The following table shows the results from the model that provides the closest fit to 
the data, with a sum of absolute differences of 0.240 (mean over contexts = 0.030). The 20 runs had an 
average summed absolute difference of 0.256 (mean 0.032), with a maximum of 0.269 (mean 0.034). 

48. MaxEnt predictions after on-line training (p. of pronounced vowel) 
 Underlying  Epenthetic  

 C_ CC_    C_ CC_ 
_σ 0.637 0.968  _σ 0.166 0.778 
error -0.011 0.030  error 0.043 -0.056 
_σσ 0.518 0.950  _σσ 0.109 0.682 
error -0.043 0.036  error 0.019 -0.001 

The weights producing that distribution are somewhat different from those for the batch model, but we 
again have a relatively high weight for *COMPLEX, and a relatively low weight for PENULT = Ə. 

49. MaxEnt constraint weights after on-line training 
*COMPLEX 3.532 
NOSCHWA 1.798 
MAX 1.184 
DEP 0.982 
NOCODA 0.670 
PENULT = Ə 0.502 
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 The predictions of the best fitting Stochastic OT model are shown in the following table. The sum 
of absolute differences with respect to the empirical data is higher than the best MaxEnt model, 0.299 
(mean 0.037). The average sums of absolute differences over 20 runs was 0.330 (mean 0.041), and the 
maximum was 0.381 (mean 0.048). The distributions of these error measures for the MaxEnt models 
and the Stochastic OT models are non-overlapping: the worst fitting of the 20 on-line MaxEnt models 
had less error than the best fitting of the Stochastic OT models. We’ll show shortly that this holds for 
other ways of measuring error as well. 

50. Stochastic OT predictions (p. of pronounced vowel) 
 Underlying    Epenthetic  
 C_ CC_    C_ CC_ 
_σ 0.648 0.914  _σ 0.169 0.769 
error 0.000 -0.025  error 0.047 -0.064 
_σσ 0.567 0.907  _σσ 0.109 0.756 
error 0.005 -0.006  error 0.012 0.073 

 Like the MaxEnt models, the Stochastic OT predictions get the general pattern of cumulative con-
straint interactions, and the individual fits are sometimes even somewhat better. The bulk of the error is 
in the rightmost column of the Epenthetic table: the values of the two rows are too close together with 
respect to the empirical data, which means the effect of PENULT = Ə in the cumulative interaction with 
*COMPLEX is too weak. In the empirical data, the cumulative effect of *COMPLEX is superlinear: there 
is a 0.032 difference in the C_ context, and a 0.150 difference in the CC_ context. As discussed in the 
last section, Stochastic OT produces cumulative interactions that are predictably sublinear in probabil-
ity space, here leading to a gross mismatch with the empirical data, which show a 0.060 difference in 
the C_ context, and 0.013 in CC_ .  

 The Stochastic OT constraint values producing this distribution are shown in the following table. In 
contrast with the MaxEnt values, the Stochastic OT values are much closer together. This is because 
variation, and the consequent cumulativity, requires constraints to be relatively close in value so that 
their ranking will vary across samples from the noise distribution. Nonetheless, we see the same gen-
eral pattern of *COMPLEX having a higher value than PENULT = Ə. 

51. Stochastic OT constraint values 
*COMPLEX 2.402 
DEP 2.144 
MAX 2.097 
NOSCHWA 2.047 
PENULT = Ə 1.977 
NOCODA 1.551 
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 The final set of predictions are those of the best fitting Noisy HG model. The sum of absolute 
differences with respect to the empirical data is comparable to the best Stochastic OT model, 0.295 
(mean 0.037). The average over 20 runs was also similar, 0.327 (mean 0.041), as was the maximum, 
0.381 (mean 0.0486). The distribution of error over the eight contexts was somewhat different; the best 
fitting model is again typical. 

52. Noisy HG predictions (p. of pronounced vowel) 
 Underlying   Epenthetic   

 C_ CC_    C_ CC_ 
_σ 0.634 0.977  _σ 0.195 0.766 
error -0.014 0.038  error 0.072 -0.067 
_σσ 0.527 0.963  _σσ 0.107 0.69 
error -0.035 0.050  error 0.016 0.002 

 The Noisy HG model succeeds in getting a greater spread than Stochastic OT between the contexts 
in the CC_ column of the Epenthetic table, in this respect mimicking MaxEnt, and approaching the 
empirical spread. In doing this, though, it also creates a greater spread between the values in the C_ 
column than motivated by the empirical data. Here Noisy HG is producing a slightly sublinear pattern: 
the effect of PENULT = Ə on the probability is a 0.088 difference on its own (penultimate column), and 
0.081 in conjunction with *COMPLEX (rightmost). In this respect, it is intermediate between the 
superlinear pattern of MaxEnt, and the highly sublinear pattern of Stochastic OT. Noisy HG patterns 
like MaxEnt in giving both contexts in the CC_ column of the Underlying table too much probability of 
pronounced schwa, and both contexts of C_ too little; these models are not quite fitting the extent to 
which *COMPLEX has a greater effect in the Epenthetic contexts.  

 The weights producing the Noisy HG distribution are given in (53). As in MaxEnt, the additive 
nature of constraint interaction in this weighted constraint model allows constraints with even small 
weights to have an effect on the outcome. Again, the greater effect of *COMPLEX than PENULT = Ə seen 
in the probability distributions is reflected in the weights, even allowing for the effect of NOCODA in 
singleton contexts. 

53. Noisy HG constraint weights 
*COMPLEX 2.299 
NOSCHWA 1.955 
NOCODA 1.746 
MAX 0.211 
DEP 0.166 
PENULT = Ə 0.034 

 In sum, all three models – MaxEnt, Noisy HG and Stochastic OT – were able to capture the general 
pattern of cumulative constraint interaction seen in the empirical data, and provided reasonable fits to 
the attested values. The MaxEnt model did slightly better than the other models, and in comparison 
with Stochastic OT, at least some of that success is attributable to its ability to produce superlinear cu-
mulativity in probability space.  

 Our comparisons of models' fit to the empirical data have thus far been made in terms of differ-
ences in raw probability. There are other ways of measuring fit, and one might wonder whether the 
outcome is different using other metrics. In the following table, we provide the mean, best and worst 
fits for each model in terms sum of squared error and Kullback-Lieber divergence, and also repeat the 
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absolute error values reported in the text.11 In all cases, MaxEnt had consistently lower error than the 
other models. When error is measured in terms of SSE or K-L Divergence, the Noisy HG values are 
lower than those for Stochastic OT, and the MaxEnt vs. Stochastic OT difference is enhanced, because 
the error in the Stochastic OT predictions is concentrated in just two of the contexts (the _CC column 
of the Epenthetic table). 

54. Error for each model, fitted on experimental data 
 Absolute Error Sum of Squared Error K-L Divergence 
 Mean Min Max Mean Min Max Mean Min Max 
Stochastic OT 0.330 0.299 0.381 0.043 0.037 0.052 0.086 0.064 0.112 
NoisyHG 0.327 0.295 0.371 0.035 0.031 0.045 0.035 0.034 0.037 
MaxEnt 0.256 0.240 0.269 0.021 0.019 0.023 0.020 0.020 0.021 

 

5. Conclusion 
 In this paper, we described and modeled the interaction of two phonological factors that condition 
French schwa alternations: schwa is more likely after two consonants (the cluster factor) and in the pe-
nultimate syllable (the phrase position factor). Each of these factors has been identified in the literature 
on French schwa, but their interaction in probability space hasn’t been previously described or formal-
ized. Using data from a judgment study, we showed that the two factors interact superlinearly, and that 
both factors play a role in schwa epenthesis and deletion. Treating each factor as a constraint, we found 
that MaxEnt is the best model of the constraints’ interaction. MaxEnt and Noisy HG can model the full 
range of cumulativity — sublinear, linear, and superlinear — while Stochastic OT can only model sub-
linear cumulativity. MaxEnt’s advantage over the other two models comes from the fact that French 
schwa displays superlinear cumulativity, which is unobtainable in Stochastic OT and, in this case, too 
extreme for Noisy HG. 

 

                                                
11 Absolute error was calculated with respect to the probability of schwa in each context. Sum of squared error 
and K-L divergence were calculated over the probability of each of schwa and no-schwa. K-L divergence is 
formulated to be calculated over entire probability distributions. If SSE were calculated over just probability of 
schwa, the value would be half of that reported, and if absolute error were calculated for both schwa and no-
schwa, it would double. 



26 

References 
 

Anderson, Stephen R. 1982. The analysis of French schwa: or how to get something for nothing. Lan-
guage. 58. 534–573. 

Anttila, Arto. 1997. Deriving variation from grammar. In F. Hinskens, R. van Hout, & W. L. Wetzels 
(eds.), Variation, Change, and Phonological Theory, 35–68. Amsterdam: John Benjamins. 

Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker. 2015. Fitting Linear Mixed-Effects 
Models Using lme4. Journal of Statistical Software. 67(1). 1–48. DOI: 
https://doi.org/10.18637/jss.v067.i01 

Benor, Sarah & Roger Levy. 2006. The chicken or the egg? A probabilistic analysis of English binomi-
als. Language. 82(2). 233–278. 

Boersma, Paul. 1997. How we learn variation, optionality, and probability. Proceedings of the Institute 
of Phonetic Sciences of the University of Amsterdam. 21. 43–58. 

Boersma, Paul & Bruce Hayes. 2001. Empirical tests of the gradual learning algorithm. Linguistic In-
quiry. 32(1). 45–86. 

Boersma, Paul & Joe Pater. 2016. Convergence properties of a gradual learning algorithm for Harmon-
ic Grammar. In J. McCarthy & J. Pater (eds.), Harmonic Grammar and Harmonic Serialism,. 
London: Equinox Press. 

Boersma, Paul & David Weenink. 2017. Praat: doing phonetics by computer (Version Version 6.0.29). 

Byrd, Richard H., Peihuang Lu, Jorge Nocedal & Ciyou Zhu. 1995. A limited memory algorithm for 
bound constrained optimization. SIAM Journal on Scientific Computing. 16(5). 1190–1208. 

Charette, Monik. 1991. Conditions on phonological government. Cambridge University Press. 

Chomsky, Noam & Morris Halle. 1968. The Sound Pattern of English. New York: Harper and Row. 

Coetzee, Andries W. & Joe Pater. 2011. The place of variation in phonological theory. In J. A. Gold-
smith, J. Riggle, & A. C. Yu (eds.), Handbook of Phonological theory, 2nd ed., 401–434. 
Wiley-Blackwell. 

Côté, Marie-Hélène. 2000. Consonant Cluster Phonotactics: A Perceptual Approach (Doctoral disser-
tation). MIT. 

Côté, Marie-Hélène. 2007. Rhythmic constraints on the distribution of schwa in French. In V. Camacho 
J.Deprez, N. Flores, & L. Sanchez (eds.), Proceedings of LSRL 36,. Amsterdam: John Benja-
mins. 

Côté, Marie-Hélène & Geofferey Stewart Morrison. 2007. The nature of the schwa-zero alternation in 
French clitics: experimental and non-experimental evidence. Journal of French Language Stud-
ies. 17. 159–186. 

Delattre, Pierre. 1951. Principes de phonétique française à l’usage des étudiants anglo-américans. 
École Française d’Êté Middlebury College. 

Dell, François. 1985. Les règles et les sons. Paris: Hermann. 

Goldwater, Sharon & Mark Johnson. 2003. Learning OT constraint rankings using a maximum entropy 



27 

model. In J. Spenader, A. Eriksson, & Ö. Dahl (eds.), Proceedings of the Workshop on Varia-
tion within Optimality theory, 111–120. Stockholm University. 

Guy, Gregory R. 1997. Violable is variable: Optimality Theory and linguistic variation. Language Var-
iation and Change. 9. 333–347. 

Hayes, Bruce. 1995. Metrical Stress Theory: Principles and Case Studies. Chicago: The University of 
Chicago Press. 

Hayes, Bruce & Colin Wilson. 2008. A Maximum Entropy Model of Phonotactics and Phonotactic 
Learning. Linguistic Inquiry. 39(3). 379–440. 

Jäger, Gerhard. 2007. Maximum entropy models and stochastic Optimality Theory. Architectures, 
Rules, and Preferences: Variations on Themes by Joan W. Bresnan. Stanford: CSLI. 467. 479. 

Jäger, Gerhard & Anette Rosenbach. 2006. The winner takes it all - almost. Cumulativity in grammati-
cal variation. Linguistics. 44(5). 937–971. 

Kenstowicz, Michael. 1994. Sonority-Driven Stress. 

Kullback, Solomon & Richard A. Leibler. 1951. On information and sufficiency. The Annals of Math-
ematical Statistics. 22(1). 79–86. 

Labov, William. 1969. Contraction, deletion, and inherent variability of the English copula. Language. 
45. 715–762. 

Léon, Pierre R. 1966. Apparition, maintien et chute du" e" caduc. La Linguistique. 2(Fasc. 2). 111–122. 

Lucci, Vincent. 1976. Le mécanisme du ‘E’ muet dans différentes formes de français parlé. La Linguis-
tique. 12(2). 87–104. 

McCarthy, John J. & Alan Prince. 1995. Faithfulness and Reduplicative Identity. In J. Beckman, L. 
Walsh Dickey, & S. Urbanczyk (eds.), University of Massachusetts Occasional Papers in Lin-
guistics 18, 249–384. Amherst, Mass.: GLSA Publications. 

McPherson, Laura & Bruce Hayes. 2016. Relating application frequency to morphological structure: 
the case of Tommo So vowel harmony. Phonology. 33(01). 125–167. 

Morin, Yves-Charles. 1974. Règles phonologiques à domaine indéterminé: Chute du cheva en français. 
Cahiers de Linguistique de l’Université Du Québec. 4. 69–88. 

Pater, Joe. 2016. Universal grammar with weighted constraints. Harmonic Grammar and Harmonic 
Serialism. 

Pizzo, Presley. 2015. Investigating Properties of Phonotactic Knowledge Through Web-Based Experi-
mentation. University of Massachusetts Amherst. 

Prince, Alan & Paul Smolensky. 2004. Optimality theory : constraint interaction in generative gram-
mar. Malden, MA: Blackwell Pub. 

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ 

Scullen, Mary Ellen. 1997. French prosodic morphology: a unified account. Indiana University Lin-
guistics Club Publications. 

Smolensky, Paul & Géraldine Legendre. 2006. The Harmonic Mind: From Neural Computation to Op-



28 

timality-Theoretic Grammar. Cambridge, MA: MIT Press. 

Staubs, Robert. 2011. HG in R (hgR). Software package. Amherst, MA: University of Massachusetts 
Amherst. Retrieved from Software available at http://blogs.umass.edu/hgr/hg-in-r 

Tranel, Bernard. 2000. Aspects de la phonologie du français et la théorie de l’optimalité. Langue Fran-
çaise. (126). 39–72. 

Wilson, Colin. 2006. Learning Phonology with Substantive Bias: An Experimental and Computational 
Study of Velar Palatalization. Cognitive Science. 30(5). 945–982. 

Zuraw, Kie & Bruce Hayes. 2017. Intersecting constraint families: an argument for Harmonic Gram-
mar. Language. 93(3). 

Zuraw, Kie & Bruce Hayes. 2017. Intersecting constraint families: an argument for Harmonic Gram-
mar. Language. 93(3). 497–548. 

 

  



29 

Appendix: list of experimental items 
 
Items were presented in two counter-balanced lists. Half of the participants saw even-numbered rows, 
and the other half of the participants saw odd-numbered rows. 
 
Deletion items 

Preceding 
context 

Following 
context Sentence 

C_ _σ Lucas te garde 
C_ _σσ Lucas te gardait 
C_ _σ Théo te boude 
C_ _σσ Théo te boudait 
C_ _σ Thomas te siffle 
C_ _σσ Thomas te sifflait 
C_ _σ Enzo te cache 
C_ _σσ Enzo te cachait 
C_ _σ Leo te vise 
C_ _σσ Leo te visait 
C_ _σ Louis te quitte 
C_ _σσ Louis te quittait 
C_ _σ Emma te guide 
C_ _σσ Emma te guidait 
C_ _σ Clara te vante 
C_ _σσ Clara te vantait 
C_ _σ Sarah te juge 
C_ _σσ Sarah te jugeait 
C_ _σ Marie te vexe 
C_ _σσ Marie te vexait 
C_ _σ Eva te choque 
C_ _σσ Eva te choquait 
C_ _σ Fanny te parle 
C_ _σσ Fanny te parlait 
CC_ _σ Christophe te chasse 
CC_ _σσ Christophe te chassait 
CC_ _σ Maurice te cite 
CC_ _σσ Maurice te citait 
CC_ _σ Loïc te pèse 
CC_ _σσ Loïc te pesait 
CC_ _σ Mathis te sauve 
CC_ _σσ Mathis te sauvait 
CC_ _σ Éric te pique 
CC_ _σσ Éric te piquait 
CC_ _σ Cédric te gêne 
CC_ _σσ Cédric te gênait 
CC_ _σ Agnès te gâte 
CC_ _σσ Agnès te gâtait 
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Epenthesis items 

Preceding 
context 

Following 
context Sentence 

C_ _σ C'est un rite saint 
C_ _σσ C'est un rite sacré 
C_ _σ C'est un bec(e) peint 
C_ _σσ C'est un bec(e) pointu 
C_ _σ C'est une disquette peinte 
C_ _σσ C'est une disquette cassée 
C_ _σ C'est une note courte 
C_ _σσ C'est une note comique 
C_ _σ C'est une truite verte 
C_ _σσ C'est une truite vivante 
C_ _σ C'est un groupe fort 
C_ _σσ C'est un groupe social 
C_ _σ C'est une boîte vide 
C_ _σσ C'est une boîte fermée 
C_ _σ C'est une brique dure 
C_ _σσ C'est une brique différente 
C_ _σ C'est une botte chic 
C_ _σσ C'est une botte chinoise 
C_ _σ C'est une flûte belge 
C_ _σσ C'est une flûte bulgare 
C_ _σ C'est une pâte chaude 
C_ _σσ C'est une pâte somptueuse 
C_ _σ C'est un lac(e) thaï 
C_ _σσ C'est un lac(e) public 
CC_ _σ C'est un acte saint 
CC_ _σσ C'est un acte sacré 
CC_ _σ C'est un casque peint 
CC_ _σσ C'est un casque pointu 
CC_ _σ C'est un disque peint 
CC_ _σσ C'est un disque cassé 
CC_ _σ C'est un texte court 
CC_ _σσ C'est un texte comique 
CC_ _σ C'est un insecte vert 

CC_ _σ Patrice te pousse 
CC_ _σσ Patrice te poussait 
CC_ _σ Elise te juge 
CC_ _σσ Elise te jugeait 
CC_ _σ Louise te cherche 
CC_ _σσ Louise te cherchait 
CC_ _σ Monique te berce 
CC_ _σσ Monique te berçait 
CC_ _σ Maxence te paye 
CC_ _σσ Maxence te payait 
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CC_ _σσ C'est un insecte vivant 
CC_ _σ C'est une secte forte 
CC_ _σσ C'est une secte vicieuse 
CC_ _σ C'est une crypte vide 
CC_ _σσ C'est une crypte fermée 
CC_ _σ C'est un masque dur 
CC_ _σσ C'est un masque différent 
CC_ _σ C'est une veste chic 
CC_ _σσ C'est une veste chinoise 
CC_ _σ C'est un pacte belge 
CC_ _σσ C'est un pacte bulgare 
CC_ _σ C'est un toast(e) chaud 
CC_ _σσ C'est un toast(e) somptueux 
CC_ _σ C'est un kiosque thaï 
CC_ _σσ C'est un kiosque public 

Fillers (every filler seen by every participant)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Margaux me a attendu 
  Jean me a choisi 
  Anna se est levée 
  Magda me a corrigé 
  Hugo se est fâché 
  Rémi me a entendu 
  Lisa se est réveillée 
  Thibault me a adoré 
  Isabelle me a aidé 
  Nathan se est inquiété 
  Nina va me écouter 
  Josette va me approcher 
  Brigitte va le aimer 
  Jacques va le voir 
  Mathilde va le boire 
  Adam va me féliciter 
  Noémie va me remercier 
  Celia va le acheter 
  Océane va le suivre 
  Charlotte va le gagner 
  C'est une danse argentine 
  C'est une robe bleue 
  C'est un tigre orange 
  C'est un poème japonais 
  C'est un iguane solitaire 
  C'est un téléphone intelligent 
  C'est une montagne violette 
  C'est un voyage ennuyeux 
  C'est un singe marron 
  C'est un meuble lourd 
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Appendix: participant background 
 
The experiment contained a demographic question asking participants for their location. The table be-
low collapses responses based on region.  
 
Number of  
participants 

 
Region 

7 Île-de-France 
7 Pays de la Loire 
6 Auvergne-Rhône-Alpes 
1 Grand Est 
1 Nouvelle-Aquitaine 
1 Bourgogne-Franche-Comté 
1 Hauts-de-France 
1 Normandy 
1 Occitanie 
1 “France” (participant didn’t specify) 

 


