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1. Introduction

Speakers of a language have implicit knowledge not only of exceptionless phonological
patterns in their language, but also variable patterns. Implicit knowledge has been observed
of both free variation, or variation within lexical items, and lexical variation or variation
across lexical items. An example of the former is t/d deletion in English (Guy 1994, Co-
etzee & Pater 2011). A single lexical item, say west, can be realized as [wEst] or [wEs] in
the same phonological context. An example of lexical variation is stress in English. En-
glish speakers are aware of probabilistic trends across words, such as that heavy syllables
attract stress (Chomsky & Halle 1968, Guion et al. 2003, Moore-Cantwell 2016). How-
ever, each individual word of English has just one stress, and does not vary (rélapse, never
relápse; reláx, never *rélax). We examine a type of variation that lies in between these two
extremes. Some, but not all, individual lexical items exhibit idiosyncratic preference for
one variant or another, above and beyond the demands of the (variable) grammar. In par-
ticular, high-frequency lexical items exhibit idiosyncratic behvior, while the behavior of
lower-frequency lexical items is probabilistic, and largely predictable from the preferences
of the grammar. This work builds on Morgan & Levy (2016), which examines binomial
expressions in English (e.g. ladies and gentlemen), finding idiosyncrasy in high-frequency
forms, and grammatical behavior in low-frequency forms.

We examine the comparative in English, which can be realized two ways, either by
the morphological (happier) or the periphrastic (more happy). For many adjectives (like
happy) both options are quite good. The choice between more and -er is conditioned by
a number of phonological factors, for example words three syllables long and longer very
rarely take -er (*beautifuller). However, many words exhibit idiosyncratic preferences that
cannot be explained by phonology alone. For example real prefers to take more while
pale, which has the same prosodic form and the same final consonant, prefers to take -er.
Consider also steadier > readier, sharper > apter, and sparser > falser.

*For useful discussion, we would like to thank Ray Jackendoff, Emily Morgan, Aleksei Nazarov, Joe
Pater, Stephanie Shih, Kie Zuraw, and audiences at at NELS 47, AMP 2016, USC, and the UConn ling lunch.
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Given that adjectives of English do in fact exhibit idiosyncratic preferences for one
form of comparative or the other, we take an expansive view of what is stored in a lexical
entry. Specifically, we propose that at least some comparatives are stored as whole words
(happier), or whole phrases (more likely), rather than being composed independently on
each use. We implement this storage in the form of UR constraints (Zuraw 2000, Boersma
2001, Pater et al. 2012, Smith 2015), which demand that a particular adjective in the com-
parative form be realized in a specific way. UR constraints compete with grammatical con-
straints in a Maximum Entropy grammatical model (Goldwater & Johnson 2003). Both
are learned together with a learning algorithm related to the Gradual Learning Algorithm
(Boersma & Hayes 2001, Boersma & Pater 2016). We propose an induction and decay
mechanism for UR constraints, so that they are induced only when needed, and decay
when unused. Additionally, we train the model using data sampled based on lexical fre-
quency, so that more frequent adjectives are experienced more often by the learner. With
these two mechanics we find that at the end of learning (a) only some adjectives exhibit
a strong preference which contradicts the grammar, and (b) more frequent adjectives are
more likely to do so. Both of these results are consistent with observed corpus data.

2. List of factors in the literature and sketch of a phonological analysis

In this section, we review the phonological and frequency factors that condition compara-
tive choice. In terms of syllable count, -er rarely occurs with stems longer than two sylla-
bles, and is favored in monosyllables. Finally stressed stems favor more, a preference that’s
especially clear in disyllabic stems (*robuster). The fact that -er occurs with monosyllables
and trochees, but not iambs or longer words, can be explained if -er selects for words with
exactly one foot (McCarthy & Prince 1986/1996), namely a moraic trochee (H́ or ĹL).

(1) Prosodic factors
3+ syllables! more (Kytö & Romaine 1997, Mondorf 2003, Hilpert 2008)
monosyllables! -er (Kytö & Romaine 1997, Mondorf 2003, Hilpert 2008)
final stress! more (Mondorf 2003, Hilpert 2008)

The final segment of the stem also plays a role. Final [li] favors more, while final [i] (ex-
cluding [li]) favors -er. Final liquids, especially [r], disfavor -er. Elsewhere in English,
near-adjacent liquids, especially identical ones, are avoided. Hall (2008) argues that avoid-
ance of [rVr] drives local dissimilation ([Inf@rEd] for infrared), and prevents the suffix -ery
from combining with r-final stems (winery,*beerery), while Martin (2007) shows that [rVr]
and [lVl] are underattested in the English lexicon, baby names, and neologisms.

(2) Final material
final [r]! more (Mondorf 2003, Hilpert 2008, pace Kytö & Romaine 1997)
final [l]! more (Hilpert 2008, pace Kytö & Romaine 1997)
final [i]! -er (Kytö & Romaine 1997, Hilpert 2008)
final [li]! more (Mondorf 2003, Hilpert 2008)
final cluster! more (Mondorf 2003, Hilpert 2008)
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While the effects of final [l]/[r] and stress can be explained by English phonology, we can’t
think of a reason why -er would be avoided with final clusters. One possibility is presented
in Mondorf (2009), who explains the preference as a reflex of processing. Mondorf’s hy-
pothesis, called more support, is that more is used to ease the processing of complex struc-
tures, including phonologically complex ones. Another possibility is that the reported effect
of clusters is an artifact of statistical modeling. In the logistic regression model of Hilpert
(2008), words ending in a consonant followed by syllabic L (e.g., humble) are coded as
ending in a final cluster (and not a final L).

A consistently strong predictor of comparative choice is adjective frequency. More fre-
quent adjectives take -er more often, as do adjectives with a higher comparative to pos-
itive ratio - the frequency of the adjective in the comparative (more+-er) divided by the
frequency of the positive form (not comparative or superlative). According to Mondorf
(2009), frequent stems and comparatives are easier to access, so don’t require more.

(3) Frequency factors
more frequent adjective! -er (Mondorf 2003, Hilpert 2008)
higher comparative-positive ratio! -er (Mondorf 2003, Hilpert 2008)

Boyd (2007) points out a more nuanced effect of frequency, related to the ones above.
Adjectives that occur in the comparative more often tend to exhibit stronger preferences,
not just for -er but also for more. We discuss this effect at some length below.

3. Corpus data and regression modeling

Our corpus study replicates many (but not all) of the phonological generalizations pre-
sented above and demonstrates that adjectives are sometimes idiosyncratic. Frequency and
phonological factors alone aren’t sufficient to fully account for comparative preference.

3.1 Corpus data

The data come from the Corpus of Contemporary American English (COCA: Davies 2008).
COCA is a corpus of written and spoken English, containing 520 million words balanced
across genres. To compile a list of comparatives, we searched for words tagged as com-
parative adjectives, and all more plus adjective sequences, where more was tagged as an
adverb. To control for noise and mistagged words, we used the following exclusion crite-
ria. We segmented -er forms by hand, and checked each stem against a list of adjectives,
excluding stems not on the list. We also excluded any adjective that didn’t occur at least 5
times with more and 5 times with -er. Although the data set doesn’t control for syntactic
context or semantics, we are confident that it contains only comparative adjectives. The
remaining data – containing 313 different stems and 723,203 tokens – were annotated with
IPA transcriptions from the CMU pronouncing dictionary (Weide 1994).
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3.2 Logistic regression models

To test for lexical idiosyncrasy in comparatives, we fit two logistic regression models: one
with random intercepts for each adjective and one without, in addition to the phonological
and frequency factors. If the random intercept model provides a signficantly better fit to the
data, we can conclude that lexical idiosyncrasy plays a role.

For the model with random intercepts, we fit a mixed effects logistic regression model
using the package lme4 (Bates et al. 2013) in R (R Core Team 2017). The dependent
variable was more vs. -er. The fixed effects were taken from the previous section, and were
all dummy coded (1 if ‘yes’; 0 if ‘no’), except frequency measures. An explanatory variable
for long stems (3+ syllables) was not included, since few long stems (just 4) survived the
corpus exclusions. The mixed effects model also included a random intercept for adjective
stem, while the fixed-effects-only model did not, but was otherwise the same.1

Some notes on coding. The comparative log frequency is the adjective’s frequency in
the comparative form (more+-er). The variables ‘Final L’ and ‘Final syllabic-L’ are ex-
clusive – a stem with final [l] is coded as syllabic-L-final but not L-final – and so are the
variables ‘Final i’ and ‘Final li’ – a stem with final [li] is coded as [li]-final but not [i]-final.
The results for both models are summarized in the table in (4). A positive value indicates
preference for more, and a negative value indicates preference for -er.

(4) Results of regression models
Mixed effects model Fixed effects model

Variable b SE p b SE p

(Intercept) 3.235 4.418
PROSODIC FACTORS

One syllable �4.426 0.092 *** �5.459 0.068 ***
Final stress 1.890 0.093 *** 1.913 0.070 ***

FINAL SEGMENT FACTORS
Final [i] �2.243 0.208 *** �2.824 0.031 ***
Final [li] �0.562 0.385 n.s. 3.832 0.041 ***
Final syllabic-L 0.310 0.824 n.s. �0.598 0.032 ***
Final L 0.561 0.186 *** 1.137 0.031 ***.
Final R 1.625 0.488 *** 1.541 0.006 ***
Final cluster 0.276 0.198 n.s. 1.016 0.020 ***

FREQUENCY FACTORS
Comp. log frequency �0.487 0.026 *** �0.579 0.006 ***
Comp.-pos. ratio �3.960 0.090 *** �0.628 0.103 ***

Log Likelihood �44,281 �77,540

(+ = more, � = -er) * = p<0.05 ** = p<0.01 *** = p<0.001
1R code for mixed effects model: glmer(More/Er⇠ oneSyll + moreThanTwoSylls + finalStress + final[i]

+ final[li] + final[el] + final[r] + finalCC + log(PosFreq) + compPosRatio + (1 | Stem), family=“binomial”)
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Among the prosodic and final segment factors, results are consistent with previous work
except for final [li], final syllabic-L, and final cluster, none of which are significant in the
mixed effects model. The difference between models with respect to final [li] is likely due
to a single adjective: likely, which accounts for over 85% of tokens for [li]-final stems, and
takes more more than 99% of the time. Among other [li]-final adjectives, the average rate
of more is only 45%. The random intercept for likely in the mixed effects model means
that it has less overall pull on the model. Similarly, the -er-favoring effect of syllabic-L in
the fixed effects model likely comes from the adjective simple, which takes -er 95% of the
time and makes up 40% of tokens for syllabic-L-final stems.

3.3 Idiosyncrasy and frequency

Phonology and frequency alone aren’t enough to explain the behavior of some idiosyn-
cratic adjectives, such as likely in the discussion above. This can be seen in the differences
between the mixed and fixed effects models. The fixed effects model, with no means of
capturing idiosyncrasy, has a much worse fit, with a log likelihood of -77,540, compared
to the mixed effects model with -44,281. While testing for the significance of random ef-
fects is non-trivial and perilous, especially in GLMMs, we cautiously find a stastically
significant difference between these models, even under very conservative assumptions. In
a likelihood ratio test where we treat every stem as a degree of freedom, the mixed model
provides a significantly better fit (c2=66,518, df=314, p<0.001).

The graphs below demonstrate idiosyncrasy in a different way. The graph on the left
shows the probability of -er for each adjective, plotted against how often it occurs in the
comparative. As frequency increases, the number of adjectives around 50% -er decreases,
and adjectives become more categorical, moving toward -er or more. We’ve labeled disyl-
labic adjectives ending in syllabic L to demonstrate that adjectives with the same frequency
and similar phonological shapes can demonstrate different comparative preferences. The
graph on the right shows the predictions of the fixed-effects-only model, plotted against
frequency. Adjectives with more error have larger labels. The fixed effects model, with
phonological and frequency predictors, isn’t sufficient to model the probabilities of some
comparatives. While the prefences of some adjectives, like supple and gentle, can be ex-
plained by their frequency, others like feeble and subtle cannot.

(5) Probability of -er for each adjective in the corpus (L) and model predictions (R)
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4. The model

In the previous sections, we demonstrate that in English, individual adjectives exhibit id-
iosyncratic preferences for either the morphological (-er) or periphrastic (more) compara-
tive. Although general grammatical constraints govern words’ preference to some extent,
individual adjectives diverge from their grammatically dictated preferences. Furthermore,
more frequent comparatives diverge more from the grammar’s preferences. In this section,
we propose a model of learning in which both grammatical trends and individual adjectives’
preferences are acquired gradually, trained on the corpus data. We use Maximum Entropy
grammar (Goldwater & Johnson 2003) to model gradient grammatical preferences, and
we use UR constraints (Zuraw 2000, Boersma 2001, Pater et al. 2012, Smith 2015) to in-
corporate individual words’ preferences into the system. In our model, UR constraints are
induced only when needed, and decay when they are not used. Because of this, and because
the learner learns gradually from corpus data, getting more opportunities to learn on more
frequent items, our model predicts idiosyncratic behavior for high-frequency lexical items,
and grammatically constrained behavior for low-frequency lexical items.

4.1 Structure

Maximum Entropy grammar (MaxEnt) is a variety of Harmonic Grammar, in which con-
straint weights determine a probability distribution over output candidates. In (6), two can-
didate outputs are considered for the adjective tall. A harmony value (H ) is calculated
for each candidate according to the equation given in (7), by multiplying the candidate’s
violations of each constraint by that constraint’s weight, and summing over all constraints.
That harmony value is then converted to a probability via the logit transform.

(6) Maximum Entropy Tableau
p H 1s !-er l!more ś ]WD!more

6.96 3.41 4.27  ������weights

TALL+COMP
taller 0.33 -7.68 1 1
more tall 0.67 -6.96 1

(7) MaxEnt equations
H =�Âwi ⇤ vi p = eH

ÂeH

In the above tableau, the weights of 1s !-er, l!more, and ś ]WD!-er received their
weights via training on a large data set of comparatives, discussed in detail below. In that
data set, monosyllables tend to take -er, [l]-final adjectives tend to take more, and adjectives
with final stress (including monosyllables) tend to take more. These competing pressures
predict that tall should form the comparative with -er 33% of the time. In our simulation, we
used a set of constraints corresponding to the phonological factors previously reported in
the literature ((1),(2), and (3) above). They are repeated here, recast as OT-style constraints.
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(8) Constraints used in the simulation:
Name Assign a violation to Weight

1s !-er monosyllabic adjectives with more 6.96
3+s !more three-syllable or longer adjectives with -er 6.62
l!more l-final adjectives with -er 3.41
li!more adjectives ending in [li] with -er 2.35
i!-er i-final adjectives with more 3.15
r!more r-final adjectives with -er 2.35
-CC!more adjectives with a final cluster with -er 1.14
ś ]!more adjectives with final stress with -er 4.27

We treat these constraints as placeholders for a more typologically-motivated constraint
set (for example, OCP constraints for the liquids). Such a constraint-based model has not
yet been developed for the comparatives, but we believe that the results we present here
with respect to lexical idiosyncrasy would hold over a wide range of grammatical models.

In (6), the model predicts just 33% taller as the comparative of tall. In the corpus,
however, taller is much more common than more tall. The latter is vanishingly rare (less
than 1% of all occurrences). Mechanisms for including idiosyncratic information about a
lexical item into a probabilistic analysis include high-weighted faithfulness (Zuraw 2000),
lexical indexation of markedness constraints (Pater 2005, Becker 2009), lexically specific
constraints (Moore-Cantwell & Pater 2016), and UR constraints (Zuraw 2000, Boersma
2001, Pater et al. 2012, Smith 2015). We use UR constraints.

UR constraints demand that a specific underlying form be used to produce a particu-
lar combination of morphological features. For example, such a constraint might demand
that the underlying representation for TALL+COMPARATIVE be /moô+tAl/. This constraint
would be violated if the UR /tAl+Ä/, or any other UR, were used instead. In an analysis
using UR constraints, candidates in a tableau are not just possible surface representations,
but are instead UR-SR pairs. This is illustrated in (10).

(9) Example UR constraints

a. TALL+COMPARATIVE! /moô+tAl/ (!moô)
Assign a violation whenever the morpheme bundle of TALL and COMPARA-
TIVE is not realized with the phonological underlying representation /moô+tAl/

b. TALL+COMPARATIVE! /tAl+Ä/ (! -Ä)
Assign a violation whenever the morpheme bundle of TALL and COMPARA-
TIVE is not realized with the phonological underlying representation /tAl+Ä/

These UR constraints demand that specific sets of morphemes, or morphological features,
be realized with a specific phonological UR. They are abbreviated in the following tableau
as ! -Ä, and ! moô, respectively. It is worth pointing out that these constraints are not
restricted to more and -er, but rather determine the realization of the entire set of input
morphological features for a language. For example, good in the comparative would have
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the UR constraint GOOD+COMPARATIVE ! /bEtÄ/, which would demand realization of
the suppletive comparative form, and be violated by the URs /gUd+Ä/ or /moô+gUd/.

(10) Tableau illustrating UR-SR pairs

FA
IT

H

!
-Ä

!
m

oô

1s
!

-e
r

l!
m

or
e

ś ]
!

m
or

e

p H 10 7.1 1.1 6.96 3.41 4.27
TALL+COMP
a. /moô+tAl/ ! moôtAl 0.005 -14.06 1 1
b. /moô+tAl/ ! tAlÄ 0.00 -24.78 1 1 1 1
c. /tAl+Ä/ ! tAlÄ 0.995 -8.78 1 1 1
d. /tAl+Ä/ ! moôtAl 0.00 -18.06 1 1 1
e. /tAl/ ! tAl 0.00 -22.84 1 1 1 1 1
f. /tAl/ ! tAlÄ 0.00 -25.87 1 1 1 1 1

In (10), the high-weighted faithfulness constraint forces each UR to surface faithfully,
so that the choice between forms of the comparative is a choice between URs, rather than a
choice between phonological operations. We do not include faithfulness, or unfaithful can-
didates in the simulation. Rather, we assume that the relevant faithfulness constraints would
get a high weight in English since m’s and o’s typically don’t get epenthesized or deleted,
suffixes don’t become clitics, etc. Our simulation will focus on candidates like a. and c.
In (10), the markedness constraints alone would predict a 33% probability on taller, just
like in (6), but the UR constraints adjust this probability. Since the UR constraint demand-
ing -er has a very high weight, taller gets nearly 100% probability. Different adjectives,
with different UR constraints, or different weights on them, would have different predicted
distributions across the two forms of the comparative. In the next section, we present a
learning model which learns the weights of the grammatical constraints in (8) as well as
inducing UR constraints for some adjectives, and learning weights for them.

4.2 Learning

We use a variation of the Perceptron learning algorithm (Rosenblatt 1958), which has
previously been adapted to the learning of OT-like grammars (Boersma & Hayes 2001,
Pater 2005). Perceptron learning is a form of error-driven learning, in which parameters
are updated whenever the learner makes a mistake on a learning datum. At each learning
‘timestep’ a learning datum is sampled, and the grammar is updated based on that datum.
Here, each learning datum is an adjective plus its comparative form, for example (tall,
taller), and adjectives are sampled based on frequency – higher-frequency comparatives
are used more frequently as learning data, and less frequent comparatives are used less fre-
quently. The learner uses the bare adjective as input to its current grammar, and predicts a
comparative. If the current grammar were the one in (6), there would be a 33% chance that
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the learner would predict taller, and a 66% chance of predicting more tall. If the learner
happened to select more tall this would count as an error, and an update would occur.

In perceptron-based OT-learning models, the weights of all relevant constraints are up-
dated by the same amount, the learning rate d . Constraints which prefer the actual output
of the learning datum are promoted, while constraints which prefer the error are demoted.
A single update is illustrated below, with more tall as the error, and tall as the correct form.

(11) Perceptron update:

a. �!w t+1 =�!w t +(�!v err��!v correct)⇤d
b. Example update: d=0.01

1s
!

-e
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s!

m
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e
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e
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m
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e

i!
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r

r!
m
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e

r!
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r

-C
C!

m
or

e

ś ]
!

m
or

e

�!v taller 0 0 1 0 0 0 0 0 1
�!v more tall 1 0 0 0 0 0 0 0 0
�!v err��!v correct 1 0 -1 0 0 0 0 0 -1
�!w t 6.96 6.62 3.41 2.35 3.15 2.35 0.58 1.14 4.27
�!w t+1 6.97 6.62 3.40 2.35 3.15 2.35 0.58 1.14 4.26

1s !-er, l!more, and ś ]!more are updated, while the other constraints are un-
changed, since they cannot adjudicate between taller and more tall. The weight of 1s!-er
is moved up, since the error violates this constraint, while the weights of the other two are
moved down, since the correct form violates them.

In the learning model we present here, we introduce two additional mechanics which
govern the learning of UR constraints. Following work such as (Pater 2010, Nazarov 2016),
our learner induces UR constraints during learning. Specifically, UR constraints are intro-
duced whenever the model makes an error on a learning datum. In the above hypotheti-
cal case, where taller is the correct output, and more tall is the error, the UR constraint
TALL+COMPARATIVE! /tAl+Ä/ would be created.

(12) UR constraint induction: On error, create a UR constraint of the form
ADJ+COMPARATIVE! correct output (if it does not already exist)

UR constraints are induced with an initial weight of 10 (a high weight in this system –
see the faithfulness constraint in (10)). If one or more UR constraints already exist for the
adjective, their weights are also updated according to the perceptron update mechanic. UR
constraints preferring the correct output will be promoted, and UR constraints preferring
the error will be demoted. They also decay as learning progresses. All UR constraints in
the system decay at the same rate of 0.0001 per timestep, and if a UR constraint decays to
zero it is removed from the system. This can happen for two reasons: either the adjective
to which the UR constraint belongs is not sampled again as a learning datum in the 10,000
timesteps it takes for the constraint to decay away, or the adjective is sampled, but no error
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is made. Low-frequency adjectives will usually wind up without UR constraints because
they will not be sampled often enough, and adjectives whose behavior is completely pre-
dictable based on the weights of the grammatical constraints will also wind up without UR
constraints, because no errors will be made on them.

This decay mechanic allows for simple but constrained induction of UR constraints –
UR constraints can be freely induced, but those which are less useful in predicting the over-
all behavior of the training data will decay away. As we will discuss below, UR constraints
for high-frequency forms, and forms which diverge from the predictions of the grammar
(like tall above) acquire very high weights, and do not decay away.

4.3 Results

We trained the learner on 1.1 million comparatives gathered from COCA. The data set
is similar to the one used to fit the regression models, but we include rare adjectives and
adjectives with categorical preferences for -er or more. The data consisted of about 4600
distinct adjectives, the majority of which occurred only once. The model was trained for 5
million timesteps, which was enough for the weights of the general grammatical constraints
to stabilize, as shown in (13). As mentioned above, adjectives were sampled according
to frequency, so that high-frequency forms are trained on more often than low-frequency
forms. In (14), the probability of each adjective taking -er as its comparative is plotted
against the log frequency in COCA of that adjective in the comparative.

(13) Weights over time during training.

Timestep (millions)

w
ei
gh
t

0 1 2 3 4 5

0
2

4
6

8

Mono-er6.96
3+sylls-more6.62

l-more3.41
i-er3.10

r-more2.35
li-more2.35

cluster-more1.14

final str-more4.27

Adjectives that are high-frequency are matched very closely by the model, while low-
frequency adjectives are matched less closely. Adjectives with a log frequency below about
5 tend to fall into probability bins - this is because they do not have UR constraints, so
their probability is entirely determined by the weights of the grammatical constraints. Each
probability bin is determined by a particular violation profile, which many adjectives in
the training set share. For example, monosyllables ending in a cluster, such as vast, crisp,
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lax all violate 1s !-er when they appear with more and all violate -CC!more when they
appear with -er. Several of these bins are labeled in (14).

(14) Observed (grey) and predicted (black) P(er) for all words in the training set.
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Adjectives that are high-frequency are matched very closely by the model, while low-
frequency adjectives are matched less closely. Adjectives with a log frequency below about
5 tend to fall into probability bins - this is because they do not have UR constraints, so
their probability is entirely determined by the weights of the grammatical constraints. Each
probability bin is determined by a particular violation profile, which many adjectives in
the training set share. For example, monosyllables ending in a cluster, such as vast, crisp,
lax all violate 1s !-er when they appear with more and all violate -CC!more when they
appear with -er. Several of these bins are labeled in (14).

Higher-frequency comparatives are more likely to have one or more UR constraints
associated with them, and also tend to have higher weights on those UR constraints. This
is illustrated in (15) with 89 frequency bins, of width 0.1 in log space. Weights above 10
(the starting weight for newly induced UR constraints) are achieved via update.

(15) % forms with a UR constraint (black) and median weight of UR constraints (grey)
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In this simulation, higher-frequency forms acquire high-weighted UR constraints, which
allows them to diverge from the general grammatical trends in the system. UR constraints
are induced for low-frequency forms, but they decay away since those forms are seen only
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rarely. The behavior of low-frequency forms is therefore determined mostly by the weights
of the general grammatical constraints, while the behavior of high-frequency forms is de-
termined by their individual UR constraints.

The online nature of learning in our model, as well as the induction and decay of UR
constraints, are crucial to achieving this result. To illustrate this, we compared the behav-
ior of our model to the behavior of two simpler models on the toy dataset in (16). In all
models, two simplistic grammatical constraints were used: one preferring more and one
preferring -er. First, we fit a ‘batch’ learning model, in which constraint weights are fit for
the entire dataset at once without sampling. We used the MaxEnt Grammar Tool (Wilson
& George 2009), and gave every adjective both possible UR constraints (demanding more
and demanding -er). Because frequency is not incorporated into this model in any way,
both high-frequency and low-frequency forms are fit equally well, and are in fact fit very
closely, as can be seen in the leftmost panel of (16). The predictions only diverge from the
training data at all because we used a very strict (L2) regularization term: s2=100. Similar
closeness of fit would obtain if this model were trained on the actual comparatives in (14).

Next, we trained a gradual learner which sampled each form according to frequency,
but which did not incorporate UR constraint induction/decay. Instead, like the batch learner
every adjective had both UR constraints. The results of this model are given in the middle
panel of (16). Because higher frequency forms are sampled more during training, they are
fit better, but all forms diverge from the grammar somewhat (which predicts about 40%
-er). Given enough training iterations, the learner will eventually encounter low-frequency
adjectives enough to match the toy data. The rightmost panel is the results of training our
learner, with UR induction and decay. Despite being trained on data very unlike natural
languages, this learner still arrives at a final state very much like the English comparatives,
as well as English binomial expressions (Morgan & Levy 2016), in which high-frequency
forms are idiosyncratic and low-frequency forms are governed by the grammar.

(16) Results on toy data comparing three models
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5. Conclusion

In this paper, we present a corpus analysis of the English comparative, together with a
learning model in which UR constraints affiliated with individual adjectives determine each
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adjective’s idiosyncratic preferences for more or -er. These UR constraints are induced dur-
ing gradual learning in a MaxEnt system, and decay when they are not used. Because of this
induction and decay, the model predicts a trade-off between lexical variation and idiosyn-
cratic behavior at high frequencies, and within-item variation following the predictions of
the probabilistic grammar at lower frequencies.
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